

RUHR-UNIVERSITÄT BOCHUM

RUHR – UNIVERSITÄT BOCHUM FACULTY OF MECHANICAL ENGINEERING

Master's Programme Mechanical Engineering

Specialisation Sustainable Energy Systems & Circular Process Engineering

Module Catalogue

Valid from summer semester 2023

In addition to the course schedules the module catalogue includes summaries of the contents of the modules. Only the module catalogue published on the website of the Faculty of Mechanical Engineering at the Ruhr-Universität Bochum is valid. Older module catalogues are to be found in the archive. Regular revisions of the module catalogue are to be expected which is why the module description valid in the semester of the last lecture is always decisive for the module examination.

Value of the module grade for the final grade

Percentage of the final grade [%] = "CP of module" * 100 * FAK / DIV

FAK = 1,0 for the modules of all study sections

DIV = 90

Modules

Advanced Topis of Experimental Micromechanics and Microtribology	6
Chemical Energy Storage and Carbon-Based Feedstock	8
Computational Fracture Mechanics	11
Computer Aided Process Design	13
Demand and Supply in Energy Markets	15
Dynamic Structures and Active Control	17
Energy Systems Analysis	19
Fundamental Aspects of Materials Science and Microengineering	25
Gasdynamics	27
Geothermal Drilling Engineering und Subsurface Technologies	
Geothermal Energy Systems	
Introduction to Three-dimensional Materials Characterization Techniques	
Master's Thesis	
Materials for Aerospace Applications	
Multiscale Mechanics of Materials	
Numerical Gasdynamics for Propulsion and Power	
Numerical Methods for Internal Aerodynamics	44
Process Simulation of Energy Plants	
Process Technology Laboratory	
Service Engineering	
Solidification Processing	50
Specialized Laboratory Energy Technology	
Thermodynamics of Mixtures	52
Turbulence Modelling	54

Index by areas of study

1) Specialisation M.Sc. Mechanical Engineering, ECTS: 40

Chemical Energy Storage and Carbon-Based Feedstock (5 ECTS, each winter semester)	8
Computer Aided Process Design (5 ECTS, each summer semester)	13
Demand and Supply in Energy Markets (5 ECTS, each summer semester)	15
Energy Systems Analysis (5 ECTS, each winter semester)	19
Specialized Laboratory Energy Technology (5 ECTS, each semester)	. 21
Process Technology Laboratory (5 ECTS, each semester)	23
Gasdynamics (5 ECTS, each winter semester)	27
Geothermal Drilling Engineering und Subsurface Technologies (5 ECTS, each winter semester)	29
Geothermal Energy Systems (5 ECTS, each summer semester)	31
Numerical Gasdynamics for Propulsion and Power (5 ECTS, each summer semester)	42
Numerical Methods for Internal Aerodynamics (5 ECTS, each summer semester)	44
Process Simulation of Energy Plants (5 ECTS, each winter semester)	46
Thermodynamics of Mixtures (5 ECTS,)	52
Turbulence Modelling (5 ECTS,)	54

2) STEM Modules M.Sc. Mechanical Engineering, ECTS: 15

Here you will only find the STEM modules offered by the Faculty of Mechanical Engineering. Module descriptions of other possible modules can be found in the corresponding areas/faculties.

Advanced Topis of Experimental Micromechanics and Microtribology (5 ECTS, each winter semester)	6
Computational Fracture Mechanics (5 ECTS, each winter semester)	11
Dynamic Structures and Active Control (5 ECTS, each summer semester)	17
Fundamental Aspects of Materials Science and Microengineering (5 ECTS, each summer semester)	25
Introduction to Three-dimensional Materials Characterization Techniques (5 ECTS, jedes Wintersemester)	34
Materials for Aerospace Applications (5 ECTS, each winter semester)	38
Multiscale Mechanics of Materials (5 ECTS, each winter semester)4	ł0
Service Engineering (5 ECTS, each summer semester)	48
Solidification Processing (5 ECTS, each winter semester)	50

3) Scientific Paper M.Sc. ME, ECTS: 30

4) non-STEM Module M.Sc. Mechanical Engineering, ECTS: 5

Non-STEM modules may be elected from the range of non-STEM related master's courses of the Faculty of Mechanical Engineering or other faculties as long as the admission is allowed. The elective module should not contain STEM content and be useful for engineering education in general. The examination board decides on admissibility upon application.

Module descriptions of possible modules can be found in the corresponding areas/faculties.

Advanced Topics of Experimental Micromechanics and Microtribology

Advanced Topis of Experimental Micromechanics and Microtribology

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9th Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Advanced Topis of Experimental			a) 4 SWS (60 h)	a) 90 h	a) each winter
Micromechanics and Microtribology					

Module coordinator and lecturer(s)

Prof. Dr. Francesca di Mare

a) Dr. St. Brinckmann

Admission requirements

Learning outcome, core skills

After successful completion of the module, the students will be able to:

- Use and evaluate different experimental techniques and design new setups based on macroscopic and microscopic mechanical testing designs
- Use interpreted programming to extract advanced characteristics of micromechanical and microtribological data
- Derive equations for micromechanics and create numerical models that mimic the experimental characteristics and limitations
- Use statistics to generate uncertainty measures for mechanical experiments at the microscale; compare the analytical models with numerical approximations

Contents

a)

This modul discusses how micromechanics and microtribology can be used to extract advanced material phenomena of metal deformation at the microscale. Among other topics, this module will discuss:

- The history of experimental micromechanics using indentation and nanoindentation
- · Limitations of experimental micromechanics and microtribology
- · File formats of experimental micromechanics, conversion and size limitations
- An interpreted computer languages and its use to investigate phenomena at the microscale
- Statistical uncertainty analysis based on the derivation of mechanical equations and discussion of uncertainty dependence and independence
- Numerical models that mimic experiments at the micrometer scale. Overview of continuum and fracture mechanics based models
- Design of numerical mechanical models and evaluation of their limitations. Comparison of these limitations with the statistical uncertainty of experiments
- Design of new micromechanical and microtribological experiments, evaluation of the expected stress state and possible crack formation

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English

Examination mode

• oral online exam, depending on the number of participants

Requirements for the award of credit points

passed oral exam

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

The lecture is given in the English language in live online lectures and practical work.

The course is designed for an optimal learning experience of 5-10 students.

Chemical Energy Storage and Carbon-Based Feedstock

Chemical Energy Storage and Carbon-Based Feedstock

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation
Courses		-	Contact hours	Self-study	Frequency
a) Chemical Energy Storage and Carbon-Based Feedstocks			a) 4 SWS (60 h)	a) 90 h	a) each winter

Module coordinator and lecturer(s)

Prof. Thomas Ernst Müller

a) Dr. rer. nat. Berthold Fischer

Admission requirements

Recommended previous knowledge: Previous knowledge of chemistry is recommended

Learning outcome, core skills

Today's energy and chemical feedstock supply and storage systems are based to a large extent on fossil resources. They need to be converted in the next decades into energy supply and feedstock systems that rely to a large extend on renewable feedstock. Most renewable sources are of intermittent nature and this will lead to completely new system design requirements to maintain reliable energy systems and a continuous feedstock supply for the chemical industry and other industries. Knowledge of these new systems and their development and implementation will be essential for graduates in the future.

Understanding that the reliability of the transformed energy systems and feedstock supply chain will rely on to a large extent on the three pillars energy storage, renewable (over)production, and carbon-based feedstocks

Ability to assess the different possibilities to deal with and balance the time-offset between power generation and power demand, know different technologies to store energy and distinguish different storage solutions and applying them to a given storage or feedstock

Understanding of the different types of carbon-based feedstocks and the application and industry where they are most suitable.

Ability to do a basic life cycle assessment of chemical feedstock supplies and chemical storage systems and their respective chances and boundary conditions for large scale adoption and implementation.

After successful completion of the module students should be able to

- have enhanced subject and method competences in the area of chemical energy storage and carbon-based feedstocks
- be familiar with current developments and technical principles in the area of chemical energy storage and carbon-based feedstocks
- compare different chemical energy storage concepts and carbon-based feedstocks and assess the suitability of these concepts in a process-chain analysis and under consideration of process technology aspects and applications
- assess and discuss thermodynamic and kinetic aspects of chemical energy storage and carbonbased feedstocks
- explain, estimate and calculate potentials, energy densities and efficiencies of storage technologies and concepts

- be familiar with interdisciplinary thinking at the interface of engineering and chemistry and can tackle actual and future problem definitions in the chemical industry, in particular regarding sustainability and use of renewable resources such as CO2and others
- enter industrial R&D in a cutting-edge field in the area of the "Energiewende" and ""Wasserstoffrepublik Deutschland"

Contents

a)

Since the beginning, human beings have made use of energy storage; history of energy storage from the perspective of the carbon cycle

- Thermodynamic basics of chemical energy storage
- Overview of energy storage technologies (including non-chemical)
- Technology and characteristics of conventional power plants
- Biogenic energy carriers; photosynthesis as the first energy storage process; fossil energy as a form of ancient biomass; solid (wood, coal), fluid (oils, crude oil) and gaseous (natural gas) biogenic energy carriers
- Chemical energy carriers in the energy system, power-to-gas (e.g. methane) and power-to-liquid (e.g. methanol); energy storage *via* fuels
- Electrochemical basics and applications for electrochemical energy storage; systems for electrochemical energy conversion and storage (batteries, electrolysis, fuel cells)
- Hydrogen storage technologies (generation, compression, liquefaction, adsorption, chemical binding to a carrier)
- Energy storage as heat
- Energy scenarios and modelling; Life Cycle Assessment
- What is a Feedstock? Renewable *vs.* depleting feedstock; renewable carbon-based feedstocks, CO2, biomass, biocoal; current feedstock consumption
- Value chain of fuels and chemicals; agricultural and industrial applications
- Renewable carbon-based feedstock for energy; biofuels from first generation corn-based, ethanol, biodiesel; second generation biofuels, cellulosics, oils, grasses; third and fourth generation, biofuels, algae
- Chemical conversion routes for carbon dioxide
- Biorefinery; production of aromatics from lignin; renewables as feedstock for polyesters, polycarbonates and polyurethanes

Educational form / Language

a) Tutorial (2 SWS) / Lecture (2 SWS) / English / German

Examination mode

• Written examination 'Chemical Energy Storage and Carbon-Based Feedstocks' (90 Min.ungraded, If the number of participants is less than 10, the examination may be conducted orally)

• Presentation (either in German or English) on a technical process (part of the module grade 100 %, topics and dates will be determined in the course tutorial).

Requirements for the award of credit points

- Passed final module exam: written exam
- Presentation on a technical process (topics and dates will be determined in the course)

Module applicability

M. Sc. Mechanical Engineering

M. Sc. Sales Engineering and Product Management

M. Sc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lecture English and German, exercises preferably German but also English possible

Module	Credits	Workload	Semester[s]	Duration	Group size
	5 69	150 11	9th Sem.		
a) Computat	ional Fracture N	lechanics	a) 4 SWS (60 h)	a) 90 h	a) each winter
Module coo	rdinator and le	cturer(s)		-,	-,
Prof. Dr. Ale	xander Hartmai	er			
a) Prof. Dr. A	Alexander Hartm	naier			
Admission	requirements				
Recommend	led previous kno	owledge: Basic kno	owledge about solid i	mechanics and pla	sticity
Learning ou	itcome, core sl	kills			
The students	s attain the abilit	ty to independently	/ simulate fracture ind	cluding plasticity fo	r a wide range of
materiais an ductile failue	of materials th	ased on the acqui	choose appropriate f	racture mod-els ar	of prille fracture an
in a finite ele	ment environme	ent.They gain suffi	ecient knowledge ab	out the theoretical	background of the
diffrent types	of fracture mod	dels, to study the r	elevant literature inde	ependently. On an	engineering level,
the students	are able to disc	riminate between	situations, where cra	cks in a structure o	or component can be
tolerated or u	under which cor	nditions cracks are	not admissible,respe	ectively.	
Contents					
a) Subisstains					
	; 				
Phenomenol	logy of fracture/		omic scale		
Concepts of	linear elastic fra	acture mechanics			
Concepts of	elastic-plastic fr	acture mechanics			
R curve beh	avior of material	S			
Concepts of	cohesive zones	(CZ), extended fi	nite elements (XFEM) and damagemec	hanics
Finite eleme	nt based fractur	e simulations for s	tatic and dynamic cra	acks	
Application t	o brittle fracture	& ductile failure for	or different geometrie	s and loadingsitua	tions
Educational	form / Langua	ige			
a) Tutorial (2	SWS) / Lecture	e (2 SWS) / Englis	h / German		
Examinatio	n mode				
Written exa	m 'Computatior	hal Fracture Mecha	anics' (120 Min., Part	of modul grade 10	0 %)
• alternativ o	rai exam (30 Mi	nuten) (Antell an c	aer Modulnote 100 %)	
Requirement Passed final	module examin	rd of credit points ation: Written exa	s m oder oral exam		
Module app	licability				
MSc. Masch	inenbau				

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Computer A	ided Proces	s Design			
Computer Aide	d Process Desig	n		1	
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 LP	150 N	8. Sem.	1 Semester[s]	
Courses	ded Dresses De	-i	Contact hours	Self-study	Frequency
a) Computer Al	ded Process De	sign	a) 4 SWS (60 h)	a) 90 n	a) jedes 505e
Module coordi Prof. DrIng. M a) DrIng. Julia	i nator and lectu larcus Grünewal Riese	l rer(s) d			
Admission red Recommended other flowsheet	uirements previous knowle simulation tool i	edge: Recomm in chemical eng	ended prerequisites: jineering	basic knowledge ir	n Aspen Plus® or
Learning outco After successfu	ome, core skills Il completion of t	s he module, stu	dents are able to		
 Develop p environme Identify th relevant ir 	processes for the ent and society, e necessary info nformation,	e manufacture c ormation needs	of chemical products for these tasks, find	and assess their in sources of information	npact on the tion, and obtain the
 Implemen simulatior further ne Familiariz 	t a complex prod as and critically e ed for action fror e themselves ind	cess in commor evaluate their re m the results, dependently an	n flowsheet simulatio esults using paramete d systematically with	n environment (Asper and sensitivity ar new tasks in a sho	ben Plus [®]), perform halysis, and derive ort period of time.
Contents a)					
The course tea following topics	ches simulation are addressed:	methods for co	mplex processes in t	he chemical indust	ry. In particular, the
Tasks of a Simulation	and requirements	s for successful	lly implement and ru	n process simulatio	ns,
Criteria fo and limita Solution s	r selecting mode tions of the mode trategies for con	els to represent els, nolex recycle lo	common unit operat	ions, as well as the	required data basis
 Process a Simulation Analysis a 	nalysis tools suc n-based options	ch as sensitivity for heat and re-	analysis, design spe source integration,	ecs and optimizatio	n,
Educational	m /l angerera				
a) Übung (2 SV	VS) / Vorlesung	(2 SWS) / Engli	isch		
Teaching meth • Mündlich 'Cor small groups (4	nods nputer Aided Pro 5 minutes))	ocess Design' (45 Min., Part of mod	ul grade 100 %, Ora	al examination in

Requirements for the award of credit points

Passed final module exam: Oral examination in small groups

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8th Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Demand a	nd Supply in En	ergy Markets	a) 4 SWS (60 h)	a) 90 h	a) each summe
Module coo Prof. Dr. rer. a) Prof. Dr. re	r dinator and le pol. Valentin Be er. pol. Valentin	cturer(s) ertsch Bertsch			
Admission I	equirements				
Recommend	ed previous kno	wledge: Recomm	nended prior knowled	ge: Basic knowled	ge of energy
economics, s	such as that cov	ered in the B.Sc.	module Energy Econ	omics. Furthermor	e, solid prior
knowledge o	f investment app	oraisal is advanta	geous. For participati	ion in the exercise	s, a (mobile)
computer wit	h a spreadshee	t program (e.g. E	xcel) is advantageous	S.	
Learning ou	tcome, core sk	ills			
After succes	sful completion of	of this module the	students are able to:		
 name d 	ifferent types of	energy markets	and explain their purp	ose and functional	litv.
name ti	ne main technol	onical socio-ecor	nomic and political dri	vers of energy den	nand and explain
nume u		Sgioui, 50010 0001	ionno una pontiour un	vero or energy der	
how the	v each change	energy demand o	over time or between	energy carriers	
how the	ey each change	energy demand o	over time or between	energy carriers.	anarov sveteme
how the • assess	ey each change how the expans	energy demand o ion of renewable	over time or between energy sources, ener pact energy demand	energy carriers. rgy efficiency and e	energy systems
how the • assess integrat	ey each change how the expans ion across secto	energy demand o ion of renewable ors and scales im	over time or between energy sources, ene pact energy demand	energy carriers. rgy efficiency and e and supply within a	energy systems and across energy
how the assess integrat carriers apply the	ey each change how the expans ion across secto	energy demand o ion of renewable ors and scales im	over time or between energy sources, ener pact energy demand	energy carriers. rgy efficiency and e and supply within a	energy systems and across energy
how the • assess integrat carriers • apply th and dra	ey each change how the expans ion across secto ne concepts lear	energy demand o ion of renewable ors and scales im nt to complex cas	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys	energy carriers. rgy efficiency and e and supply within a nd interpret the cor	energy systems and across energy responding results
how the • assess integrate carriers • apply the and drave • work in	ey each change how the expans ion across secto le concepts lear w conclusions for dependently in r	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy syster d present results of the	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem.	energy systems and across energy responding results
how the assess integrate carriers apply the and dra work in way	ey each change how the expans ion across secto ne concepts lear w conclusions for dependently in p	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. eir group work in a	energy systems and across energy responding results an understandable
how the • assess integrat carriers • apply th and dra • work in way.	ey each change how the expans ion across secto ne concepts lear w conclusions for dependently in p	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a	energy systems and across energy responding results an understandable
how the • assess integrat carriers • apply th and dra • work in way. Moreover, th	ey each change how the expans ion across secto e concepts lear w conclusions for dependently in p e students will h	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a	energy systems and across energy responding results an understandable
how the • assess integrat carriers • apply th and dra • work in way. Moreover, th • develop	ey each change how the expans ion across secto ne concepts lear w conclusions for dependently in p e students will h	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th ked and critical way a	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a and are able to sele	energy systems and across energy responding results an understandable ect and apply
how the • assess integrat carriers • apply th and dra • work in way. Moreover, th • develop establis	ey each change how the expans ion across secto e concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures,	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a and are able to sele	energy systems and across energy responding results an understandable ect and apply
how the • assess integrat carriers • apply th and dra • work in way. Moreover, th • develop establis • acquire	ey each change how the expans ion across secto he concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th ked and critical way a nethodological compe	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a and are able to sele tence and are able	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio	ey each change how the expans ion across secto e concepts lear w conclusions for dependently in p e students will h ped the ability to hed methods ar d in-depth and in nally appropriate	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner.	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a hethodological compe	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. heir group work in a and are able to sele tence and are able	energy systems and across energy responding results an understandable ect and apply
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students	ey each change how the expans ion across secto le concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in nally appropriate practice scienti	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th ked and critical way a hethodological compen-	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a and are able to sele tence and are able	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students develop	ey each change how the expans ion across secto he concepts lear w conclusions for dependently in p e students will h hed the ability to hed methods ar d in-depth and in hally appropriate practice scienti	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th ems in technical s	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th ked and critical way a hethodological compe ninking and can systems in a structure	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. eir group work in a and are able to sele tence and are able d way and solve th	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students develop interdis	ey each change how the expans ion across secto he concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in nally appropriate practice scienti o complex proble ciplinary way us	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th ems in technical s ing suitable meth	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a hethodological compe ninking and can systems in a structure ods,	energy carriers. rgy efficiency and e and supply within a nd interpret the cor- stem. eir group work in a and are able to sele tence and are able d way and solve th	energy systems and across energy responding results an understandable ect and apply e to apply it in a nem in an
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students develop interdis transfer	ey each change how the expans ion across secto be concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in hally appropriate practice scienti o complex proble ciplinary way us	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th ems in technical s ing suitable meth is to concrete sys	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of th ked and critical way a hethodological compe hinking and can systems in a structure ods, tems engineering pro	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. leir group work in a and are able to sele tence and are able d way and solve the oblems.	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students develop interdis transfer Contents	ey each change how the expans ion across secto le concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in hally appropriate practice scienti o complex proble ciplinary way us	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th ems in technical s ing suitable meth is to concrete sys	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a hethodological compe hinking and can systems in a structure ods, tems engineering pro	energy carriers. rgy efficiency and e and supply within a nd interpret the cor stem. heir group work in a and are able to sele tence and are able d way and solve the oblems.	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the • assess integrat carriers • apply th and dra • work in way. Moreover, th • develop establis • acquire situatio The students • develop interdis • transfer Contents a)	ey each change how the expans ion across secto he concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in hally appropriate practice scienti o complex proble ciplinary way us	energy demand of ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary me manner. fic learning and the ems in technical s ing suitable meth is to concrete sys	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a nethodological competi- ninking and can systems in a structure ods, tems engineering pro-	energy carriers. rgy efficiency and e and supply within a nd interpret the cor- stem. leir group work in a and are able to sele tence and are able d way and solve th oblems.	energy systems and across energy responding results an understandable ect and apply e to apply it in a
how the assess integrat carriers apply th and dra work in way. Moreover, th develop establis acquire situatio The students develop interdis transfer Contents a) - Basics of et	ey each change how the expans ion across secto le concepts lear w conclusions for dependently in p e students will h bed the ability to hed methods ar d in-depth and in nally appropriate practice scienti o complex proble ciplinary way us knowledge/skill	energy demand o ion of renewable ors and scales im nt to complex cas or the transforma oroject groups and ave think in a networ nd procedures, nterdisciplinary m e manner. fic learning and th ems in technical s ing suitable meth is to concrete sys	over time or between energy sources, ener pact energy demand se studies, analyse ar tion of the energy sys d present results of the ked and critical way a hethodological competi- ninking and can systems in a structure ods, tems engineering pro-	energy carriers. rgy efficiency and e and supply within a nd interpret the cor- stem. heir group work in a and are able to sele tence and are able d way and solve the oblems.	energy systems and across energy responding results an understandable ect and apply e to apply it in a

- Energy demand:

• Energy demand by sector and energy carriers at global and regional level

- Bottom-up analysis of energy demand
- Top-down analysis of energy demand

- Energy supply:

- Investment appraisal
- · Investing in supply expansion

- Group work on complex case studies focussing on how policy, regulation and markets affect energy demand (between sectors, over time) and supply

During the lecture and exercise, students work in project groups on concrete case studies, prepare a written paper and present their results at the end of the term.

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English

Examination mode

• Written exam 'Demand and Supply in Energy Markets' (90 Min., Part of modul grade 100 %, onsite or online)

• Course-related tasks: Group work (40 hours, deadlines will be announced at the beginning of the semester) (If the group work is completed before the final module exam, optional bonus points are possible for the exam).

Requirements for the award of credit points

- Passed written exam (Note: The grade is based on the written exam only)
- Successful completion of the group work (details will be announced at the beginning of the semester)

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Dynamic Structures and Active Control

Dynamic Structures and Active Control

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8th Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Dynamic Structures and Active Control			a) 3 SWS (45 h)	a) 105 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. Tamara Nestorovic

a) Prof. Dr. Tamara Nestorovic

Admission requirements

Basic knowledge of control systems is of advantage

Learning outcome, core skills

The students acquire an overall competence in fundamental methods of active structural

control. After successfully completing the course, the students are able to recognize the problems in practice and to apply the acquired knowledge in solving engineering problems in the field active control of mechanical structures, with the focus on active vibration control. In particular, the students:

- have basic knowledge in behavior and modeling of piezoelectric materials for applications in smart structures and active systems
- have knowledge in model development of mechanical structures for the control system design (linear time invariant systems in the state-space and transfer function form)
- · are able to perform the model-based system analysis in time and frequency domain
- · are able to design basic control structures with compensator and feedback gain systems
- are able to independently simulate control systems (PID and pole placement controller)
- · have knowledge in discrete-time control systems
- are able to use Matlab/Simulink software and toolboxes for the control system analysis, design and simulation

Contents

a)

The course presents an overall insight in the modeling and control of active structures and systems. Basic terms and definitions are introduced along with presentation of the potential application fields. For the purpose of the controller design for active structural control, the basics of the control theory are introduced: development of linear time invariant models, representation of linear differential equations systems in the state-space form, controllability, observability and stability conditions of control systems. The parallel description of the modeling methods in structural mechanics enables the students to understand the application of control approaches. For actuation/sensing purposes multifunctional active materials (piezo ceramics) are introduced as well as the basics of the numerical model development for structures with active materials. Control methods include time-continuous and discrete-time control theory for single-input single output systems. Differences and analogies between continuous and discrete time control systems are specified and highlighted on the basis of a pole placement method. Closed-loop controller design for active structures is explained. Different application examples and problem solutions will show the feasibility and importance of the active structural systems development. The students also get insight into basics of

active structural health monitoring. Within this course the students learn computer aided controller design and simulation using Matlab/Simulink software. Students will implement the acquired knowledge in the framework of a seminar paper related to the controller design supported by Matlab Software.

Educational form / Language

a) Lecture with tutorial / English

Examination mode

• Written exam 'Dynamic Structures and Active Control' (90 Min., Part of modul grade 100 %)

• Homework – Seminar paper based on the computer exercises; deadlines will be announced at the beginning of the semester

Requirements for the award of credit points

Passed final module examination and passed Seminar paper

Module applicability

MSc Maschinenbau

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lectures with exercises, computer exercises and tutorials (3h / week) / English

Energy Systems Analysis

Energy Systems Analysis

Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	9th Sem.	1 Semester[s]	no limitation	
Courses			Contact hours	Self-study	Frequency	
a) Energy Systems Analysis			a) 4 SWS (60 h)	a) 90 h	a) each winter	

Module coordinator and lecturer(s)

Prof. Dr. rer. pol. Valentin Bertsch

a) Prof. Dr. rer. pol. Valentin Bertsch

Admission requirements

Recommended previous knowledge: Recommended prior knowledge: Basic knowledge of energy economics, such as that covered in the B.Sc. module Energy Economics. Furthermore, solid prior knowledge in operations research as well as investment appraisal are advantageous. Exercises are organised as computer tutorials. If possible, these take place in the CIP pool(s) on campus. If students want to work on the exercises outside the CIP pool hours, they need a (mobile) computer on which they can install an open-source energy system model, which is provided by the chair.

Learning outcome, core skills

After successful completion of this module the students are able to

- name categories of energy systems models and explain the methodological concepts behind the different categories.
- explain and apply approaches for generating energy systems model input data in a structured way.
- apply selected methods and models to practical problems (e.g. unit commitment optimisation).
- interpret results from energy systems models and draw conclusions to support decision making.
- discuss strengths and weaknesses of the methods and models used and to discuss and derive potential for improvement.

Moreover, the students will have

- developed the ability to think in a networked and critical way and are able to select and apply established methods and procedures,
- acquired in-depth and interdisciplinary methodological competence and are able to apply it in a situationally appropriate manner.

The students practice scientific learning and thinking and can

- develop complex problems in technical systems in a structured way and solve them in an interdisciplinary way using suitable methods,
- transfer knowledge/skills to concrete systems engineering problems.

Contents

a)

Modelling and Simulation of Energy Systems

- Introduction and overview of energy systems analysis
- Fundamental optimisation models for power systems analysis
 - Optimal unit commitment (short-term planning)

- Optimal capacity expansion (long-term planning)
- · Scenario planning approaches
 - Introduction to scenario planning
 - Combination of scenario planning and power systems analysis
- Investment appraisal
- · Selected case studies

Decision Analysis and Assessment of Strategies

- · Types of decision environments and models
- Structuring decision problems
 - Generating objectives and hierarchies
 - Generating and preselecting alternatives
- Preference elicitation
- Aggregation functions and sensitivity analysis
- Selected case studies

During the exercises, students work on concrete case studies using an open source energy systems model to be installed on their (mobile) computers, and practise preparing input data, processing model results and drawing conclusions.

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English

Examination mode

Written exam 'Energy Systems Analysis' (90 Min., Part of modul grade 100 %, onsite or online)
Assignments accompanying the course: Computer tutorials / exercises (details will be announced at the

beginning of the semester).

Requirements for the award of credit points

- Passed written exam (Note: The grade is based on the written exam only
- Successful completion of the computer exercises (details will be announced at the beginning of the semester)

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Specialized Laboratory Energy Technology

Specialized Laboratory Energy Technology

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8th/9th Sem.	1 Semester	50
Courses			Contact hours	Self-study	Frequency
a) Specialized Laboratory Energy Technology			a) 2 SWS (30 h)	a) 120 h	a) each Sem.

Module coordinator and lecturer(s)

Dr.-Ing. David Engelmann

a) Prof. Dr.-Ing. V. Scherer, Prof. Dr. Francesca di Mare, Prof. Romuald Skoda, Prof. Dr. rer. pol. Valentin Bertsch

Admission requirements

none

Learning outcome, core skills

After successful completion of the module, students are able to

- explain the functionality, the field of application as well as the underlying physics of the setups presented in the experiments
- analyse and proof gathered experimental data
- prepare, illustrate and present experimental results
- · independently work out solutions to questions related to the particular experiments

Contents

a)

The chairs Energy Technology (LEAT), Thermal Turbomachinery and Aero Engines (TTF), Energy Systems and Energy Economics (EE) as well as Hydraulic Fluid Machinery (HSM) offer a specialized laboratory to students of the master's programme Mechanical Engineering in each winter and summer semester. By participating in five experiments within one semester, students are taught interesting and innovative techniques in the energy sector. The portfolio includes, among others, the following experiments, which can change from summer to winter semester:

- Determination of the calorific value of a solid fuel using a calorimeter (LEAT)
- Flow measurement using Laser Doppler Anemometry (LEAT)
- Elemental analysis (LEAT)
- Experimental determination of flow parameters of a compressor profile (TTF)
- Performance testing of a screw compressor (TTF)
- Determination of the engine characteristics of a radial compressor stage (TTF)
- Function and possible field of application of a gas engine driven combined heat and power plant (EE)
- Cavitation in centrifugal pumps (HSM)
- Numerical test rig for centrifugal pumps (HSM)
- Measurement oft pressure distribution around a NACA profile (HSM)

Educational form / Language

a) Laboratory / English/ German

Examination mode

Compulsory attendance

Requirements for the award of credit points

- Participation in the preliminary meeting
- Participation in all 5 experiments offered within one semester
- · Passed pre-tests for all 5 experiments offered within one semester
- · Passed detailed report of the first assigned experiment
- · Passed presentation of the second assigned experiment

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Interested students register for the specialized laboratory in FlexNow within 6 weeks before the beginning of the semester.

Process Technology Laboratory Process Technology Laboratory						
Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	8th/9th Sem.	1 Semester[s]	40	
Courses		a) 2 SWS (30 h)	Self-study	Frequency		
a) Fachlabor Verfahrenstechnik			a) 120 h	a) each Sem.		

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Eckhard Weidner

a) Dr.-Ing. Stefan Pollak

Admission requirements

Recommended previous knowledge: All students with admission to the master's program in mechanical engineering are eligible to participate.

Learning outcome, core skills

Subject-specific laboratories in the Master's program generally serve to acquire the skills necessary for entry into experimental (subject-specific) scientific work. Since the relevant practical skills depend to a large extent on the chosen focus, subject-specific laboratories are offered. In the specialised Process Technology Laboratory, the focus is on basic unit operations and the acquisition and evaluation of measurement data.

After the successful completion of the module, the students

- practice scientific thinking, learning and working in a more in-depth form.
- are familiar with the comprehensive engineering fundamentals in the area of their major field of study and are able to apply these to subject-specific problems.
- have practical skills in the use of measurement setups and experimental equipment.
- present their own experimental results and are proficient in recording and processing measurement results.
- possess both disciplinary and interdisciplinary methodological competence and are able to apply these in a manner appropriate to the situation.

Contents

a)

In the specialised laboratory, students of the master's program in mechanical engineering with a specialization in energy and process engineering, learn basic operations of process engineering and the associated measurement and analysis technology.

The laboratory consists of 6 experiments, which are regularly updated and can therefore vary. Which experiments are offered depends on the availability of equipment and supervisors. The experiments are different in summer and winter semesters. Currently available experiments are:

Vapor Pressure / Particle Image Velocimetry / Orifice Flow / Bubble Column Viscosimetry / Particle Technology / Heat Exchangers / Density Measurement Fluidised Bed / Spray Drying / Boiling Equilibrium / Rectification The laboratory is absolved in groups. A group ideally consists of four students. All experiments must be prepared using the script provided. At the beginning of each experiment, this preparation will be checked in an oral entrance examination. As a follow-up, each group prepares a protocol or gives a presentation for each experiment.

Educational form / Language

a) Praktikum / German / English

Examination mode

• Praktikum 'Process Technology Laboratory' (6 Mon., Part of modul grade 100 %, Experimental protocols or presentation of the results)

Anwesenheitspflicht - Vorbereitung, Versuchsbeteiligung und Nachbereitung

Requirements for the award of credit points

Preparation, participation in the experiment and follow-up are prerequisites for receiving a grade. To pass the laboratory, all 6 experiments must be passed. The student will receive an overall grade for all 6 protocols or presentations.

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Module number	Credits 5 CP	Workload 150 h	Semester[s] 8th Sem.	Duration 1 Semester[s]	Group size no limitation
Courses a) Fundamer and Microen	ntal Aspects of N gineering	laterials Science	Contact hours a) 4 SWS (60 h)	Self-study a) 90 h	Frequency a) each summer
Module coo Prof. DrIng. a) Prof. DrI	rdinator and lee Gunther Eggele ng. Gunther Egg	cturer(s) er eler, Prof. Dr. Tor	ng Li, Prof. DrIng. A	\Ifred Ludwig	
Admission I Recommend	equirements ed previous kno	wledge: keine			
Learning ou	tcome, core sk will learn:	ills			
formation to apprifour case to use it objective importation to apprifour shape it that the in this a technol to famil literatur skills in	on of ordered ph eciate the role of se studies. he methodology re to identify new nt role of micro eciate the applie ature service) ar memory implants are is plenty of sp area is vital for p ogy. iarize themselve e of materials so English.	ases and heterog f microstructure in of combinatorial v alloy composition engineering in this ad side of fields lik ad shape memory s). bace for improving rogressing the fiel es with the English cience and microe	eneous particle/matr determining function materials research to ns and to invent new s respect. e high temperature r alloys (acceptance of g existing and inventi d and for technologi language, which is engineering. The lect	rix systems. nal and structural r o assess material li r materials. They w materials (lifetime o criteria for shape m ing new materials, cal success in mat used in the acader ure will also develo	naterials properties i braries with the ill appreciate the of components in hig nemory actuators an and that progress erials science and nic and technical op communication
a) The students diagrams, dii todays mater (HEAs), inter	will learn to app fusion, strength rials research an metallic phases	oly basic materials physical properti d feature fascinat (IPs), single cryst	s science concepts (es) to four material c ing structural and fu al Ni-base superallo	elements of micros classes, which are i nctional properties: ys (SX) and shape	tructure, phase in the focus of thigh entropy alloys memory alloys

Key materials science concepts from the fields of solid state physics (crystal structures and crystal defects), thermodynamics (thermodynamics of mixtures), kinetics (diffusion) and mechanics (uniaxial testing, fracture mechanics) will be reviewed. Emphasis is placed on the importance of the strong link between elementary atomistic, crystallographic, thermodynamic/kinetic and microstructural processes

understood on the basis of the concept toolbox, which the students have learned in their basic studies.

and the functional and structural properties of materials/components on the macro scale. The following subtopics will receive special attention:

- Importance of atoms and electrons in materials engineering and the transition from atoms to alloys and from alloys to components
- Thermodynamic concepts in materials engineering and fundamentals of alloy design (with a special focus on ternary phase diagrams)
- Combinatorial materials research
- Kinetic concepts in materials science and engineering (with a focus on microstructural evolution)
- Basic concepts of solid state phase transformations
- Understanding and application of knowledge to four materials classes: high entropy alloys, intermetallic phases, single crystal superalloys and shape memory alloys
- Acquisition of knowledge about high temperature strength (example: superalloys), fracture mechanics and fatigue (example: shape memory alloys), structure and properties of alloys and compounds (chemistry, crystallography and physical properties) and methods for the invention of new materials (micro engineering and combinatorial materials research)

Educational form / Language

a) Lecture with tutorial / English / German

Examination mode

• Written exam 'Fundamental Aspects of Materials Science and Microengineering' (120 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passing the exam

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Gasdynamics Module number Credits 5 CP Workload 150 h Semester[s] 9th Sem. Duration 1 Semester[s] a) Semester[s] b) Self-study a) Gasdynamik Group size no limitation Courses a) Gasdynamik Contact hours a) 4 SWS (60 h) a) 90 h Self-study a) 90 h Frequency a) each winter Module coordinator and lecturer(s) Contact hours a) 4 SWS (60 h) Self-study a) 90 h a) each winter Module coordinator and lecturer(s) Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Earning outcome, core skills Atter attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) Recapitulation of the basic concepts of fluid mechanics and thermodynamics Conservation laws Speed of sound and Mach-number Normal and oblique shock waves Expansion waves Lift and drag in supersonic flow Method of characteristics Compressible potential flow Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modu	Gasdynamic	S				
Module number Credits 5 CP Workload 150 h Semester[s] 9th Sem. Duration 1 Semester[s] a) Self-study a) 90 h Group size no limitation Courses a) Gasdynamik Contact hours a) 4 SWS (60 h) Self-study a) 90 h Frequency a) each winter Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Contact hours a) 4 SWS (60 h) Self-study a) 90 h a) each winter Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fordgeschrittene Strömungsmechanik). Ferquency a) a determing outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) Recapitulation of the basic concepts of fluid mechanics and thermodynamics Conservation laws Speed of sound and Mach-number Normal and oblique shock waves Eth and drag in supersonic flow Method of characteristics Compressible potential flow Numerical results Educational form / Language a) Tutoria	Gasdynamics					
Item model String String String Termination Courses a) Gasdynamik b) 4 SWS (60 h) a) 9 0 h a) each winter Module coordinator and lecturer(s) Prof. Romuald Skoda a) 0 h a) each winter Module coordinator and lecturer(s) Prof. Romuald Skoda a) 0 h a) each winter Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Learning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gadynamic and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) Recapitulation of the basic concepts of fluid mechanics and thermodynamics Conservation laws Speed of sound and Mach-number Normal and oblique shock waves Expansion waves Lift and drag in supersonic flow Method of characteristics Compressible potential flow Numerical resuits Educational forn / La	Module	Credits	Workload	Semester[s]	Duration	Group size
Courses Contact hours a) Gasdynamik Self-study a) 90 h Frequency a) each winter Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann a) each winter Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Earning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) . Recapitulation of the basic concepts of fluid mechanics and thermodynamics Conservation laws . Speed of sound and Mach-number Normal and oblique shock waves . . Expansion waves . . Lift and drag in supersonic flow . . Method of characteristics <t< th=""><th>number</th><th>5 CP</th><th>150 h</th><th>9th Sem.</th><th>T Semester[s]</th><th>no limitation</th></t<>	number	5 CP	150 h	9th Sem.	T Semester[s]	no limitation
a) Gasdynamik (a) 4 SWS (60 h) (a) 90 h (b) each winter Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik), and thermodynamics (Fortgeschrittene Strömungsmechanik), and thermodynamics (Fortgeschrittene Strömungsmechanik), and thermodynamics (Fortgeschritteneethelteneethelteneethelteneethelteneethel	Courses			Contact hours	Self-study	Frequency
Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Learning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) • Recapitulation of the basic concepts of fluid mechanics and thermodynamics • Conservation laws • Speed of sound and Mach-number • Normal and oblique shock waves • Expansion waves • Lift and drag in supersonic flow • Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points	a) Gasdynamik			a) 4 SWS (60 h)	a) 90 h	a) each winter
Admission requirements Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Learning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) Recapitulation of the basic concepts of fluid mechanics and thermodynamics Conservation laws Speed of sound and Mach-number Normal and oblique shock waves Expansion waves Lift and drag in supersonic flow Nethod of characteristics Compressible potential flow Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points Passed module exam: Oral exam Module applicability Msc. Mechanical Engineering	Module coordi	nator and lectu Skoda milian Daßmann	rer(s)			
Admission requirements Recommended previous knowledge: Bachelor degree in Mechanical Engineering Fundamental of Fluid Mechanics (Grundlagen der Strömungsmechanik), ideally also Advanced Fluid Mechanics (Fortgeschrittene Strömungsmechanik). Learning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) • Recapitulation of the basic concepts of fluid mechanics and thermodynamics • Conservation laws • Speed of sound and Mach-number • Normal and oblique shock waves • Expansion waves • Lift and drag in supersonic flow • Method of characteristics • Compressible potential flow • Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min Part of modul grade 100 %, Oral exam in Englis	a) DrIng. Maxi					
Learning outcome, core skills After attending this module the student will understand state-of-the-art concepts and methods of gasdynamics and its applications in engineering sciences. The student will be in a position to analyse complex problems by selecting an appropriate approach to solving the problem and by applying well established solution methods. Additionally, the student will have the ability to transfer the learned skills into solving new problems. Contents a) • Recapitulation of the basic concepts of fluid mechanics and thermodynamics • Conservation laws • Speed of sound and Mach-number • Normal and oblique shock waves • Expansion waves • Lift and drag in supersonic flow • Method of characteristics • Compressible potential flow • Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points Passed module exam: Oral exam Module applicability Msc. Mechanical Engineering	Recommended Fluid Mechanics (Fortgeschritter	uirements previous knowle s (Grundlagen de ne Strömungsme	edge: Bachelor er Strömungsn chanik).	⁻ degree in Mechanic nechanik), ideally als	al Engineering Fun o Advanced Fluid I	idamental of Mechanics
Contents a) • Recapitulation of the basic concepts of fluid mechanics and thermodynamics • Conservation laws • Speed of sound and Mach-number • Normal and oblique shock waves • Expansion waves • Lift and drag in supersonic flow • Method of characteristics • Compressible potential flow • Numerical results Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points Passed module exam: Oral exam Module applicability MSc. Mechanical Engineering	Atter attending gasdynamics an complex proble established solu solving new pro	this module the s nd its application ms by selecting a ution methods. A blems.	student will un s in engineerir an appropriate dditionally, the	derstand state-of-the ng sciences. The stud approach to solving a student will have the	-art concepts and r dent will be in a pos the problem and b e ability to transfer	nethods of sition to analyse y applying well the learned skills into
Educational form / Language a) Tutorial (2 SWS) / Lecture (2 SWS) / German / English Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points Passed module exam: Oral exam Module applicability MSc. Mechanical Engineering Weight of the mark for the final score	a) • Recapitula • Conserval • Speed of s • Normal an • Expansior • Lift and dr • Method of • Compress • Numerical	ation of the basic tion laws sound and Mach ad oblique shock waves ag in supersonic characteristics tible potential flow results	concepts of fl -number waves flow	uid mechanics and th	nermodynamics	
Teaching mode • Oral examination 'Gasdynamics' (20 Min., Part of modul grade 100 %, Oral exam in English or optionally in German) Requirements for the award of credit points Passed module exam: Oral exam Module applicability MSc. Mechanical Engineering Weight of the mark for the final score	Educational fo a) Tutorial (2 S\	rm / Language NS) / Lecture (2	SWS) / Germa	an / English		
Requirements for the award of credit points Passed module exam: Oral exam Module applicability MSc. Mechanical Engineering Weight of the mark for the final score	Teaching mod • Oral examinat optionally in Ge	e ion 'Gasdynamic rman)	s' (20 Min., Pa	art of modul grade 10	0 %, Oral exam in	English or
Module applicability MSc. Mechanical Engineering Weight of the mark for the final score	Requirements Passed module	for the award o exam: Oral exa	f credit point ກ	S		
MSc. Mechanical Engineering Weight of the mark for the final score	Module applic	ahility				
	MSc. Mechanic	al Engineering				
	Woight of the	mark for the fire				

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Manuscripts for lecture and exercise are available in both English and German. Also, the entire module will be made available in German as a video stream via Moodle. Further literature will be recommended during the lecture.

Geothermal I	Drilling Enginee	ring und Subsurfa	ce Technologies	-	
Module	Credits	Workload	Semester[s]	Duration	Group size
	5 64	150 h	9 Sem.		
Courses	al Drilling Engir	peering and	a) 1 SWS (60 b)	Self-study	Frequency
Subsurface T	echnologies	leening and	a) 4 3003 (00 II)	a) 50 m	a) each winter
Module cool	dinator and le	cturer(s)			
Prof. Dr. rer.	nat. Rolf Brack	e			
a) Prof. Dr. re	er. nat. Rolf Bra	icke			
Admission r	equirements				
Recommend	ed previous kno	owledge: English l	anguage skills: "Test	of English as a Fo	oreign
Language" (I "International	OEFL): the tes	t result in the inter	net version (iBT) sho	build be at least 80	points, or
International	English Langu	age resung Syste	em (IEL15): minimun	n overall score o	(academic).
Learning ou	tcome, core sl	kills			
The course g	ives an introdu	ction to the princip	les of conventional a	nd advanced deep	o drilling technologie
and of production	boro plopping	voir engineering le	chnologies. Students	s learn now to plan	a drilling project
including wei	bore planning		onings and devices.		
Knowledge:					
• Eundan	nentals of deen	drilling systems			
Drilling	toolina	unning systems			
 Well an 	d casing stabili	ty			
 Site ma 	nagement skills	5			
 Mud cire 	culation				
• LWD/N	/WD technique	s			
 Reserve 	oir characterisa	tion and testing			
Abilities:					
 Explain 	the main meth	ods and paramete	rs of drilling technolo	ду	
 Describ 	e potential drilli	ng problems			
 Define t 	he compositior	of the cost struct	ure of a drilling projec	ct	
 Calcula 	te casing desig	ns			
Competence	5:				
• Develor) deep drilling a	and production cor	icents		
Explain	the main meth	ods and paramete	rs of drilling technolo	av.	
Describ	e potential drilli	ng problems.		, ,	
 Name n 	najor advanced	drilling technolog	ies,		
Define t	he composition	of the cost struct	ure of a drilling projec	ot.	
Nama k			- · •		

- Describe reservoir test principles,
- Define the parameters of a conceptual reservoir model.
- Tell principles of resource management,
- Calculate simple production parameters.
- Define pumping systems for specific applications,
- Describe the processes in the borehole while pumping,
- Name the damage mechanisms of downhole pumps.
- Describe the hydrochemically induced failure processes in the borehole while pumping.

Contents

a)

- Deep drilling basics; mechanical rock destruction process
- Drilling techniques and process
- Rotary drilling, percussion drilling, directional drilling
- Innovative and unconventional drilling techniques (thermal, hydraulic, coiled tubing)
- Drilling specific laboratory analysis
- Mud logging
- · Health, safety issues and environmental impacts of drilling projects
- · Pumping the reservoir
- · Test procedures and low-temperature reservoir modelling
- Reservoir Engineering

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English / German

Examination mode

• Hausarbeit 'Geothermal Drilling Engineering and Subsurface Technologies' (40 Std., Part of modul grade 100 %, Homework as group work (in small groups) on various topics with subsequent presentation and discussion.)

Requirements for the award of credit points

• Passed final module examination: Term paper

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Geothermal Energy Systems

Geothermal Energy Systems

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8 Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Geothermal I	Energy Systems		a) 4 SWS (60 h)	a) 90 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. rer. nat. Rolf Bracke

a) Prof. Dr. rer. nat. Rolf Bracke

Admission requirements

Recommended previous knowledge: English language skills: "Test of English as a Foreign Language" (TOEFL): the test result in the internet version (iBT) should be at least 80 points, or "International English Language Testing System" (IELTS): minimum overall score "6" ("academic").

Learning outcome, core skills

The students know the fundamentals of energy conversion systems such as electricity generation from geothermal resources at low and at high enthalpy. They describe the function of the components of a power plant and understand the thermodynamics of fluid and steam cycles. They are able to design simple district heating networks and develop concepts for industrial applications for infrastructural and agricultural uses.

Kenntnisse:

- Components of a hydrothermal system
- · Methods of enhancing geothermal reservoirs
- · Reservoir principles for thermal water generation
- Schematic flow and temperature / entropy processes for geothermal plants
- Equipment for plants for electricity generation from steam and binary cycles and for direct uses
- · Estimate the environmental and social impacts of geothermal projects

Fertigkeiten:

- · Define the elements of thermodynamics
- Formulate the laws of thermodynamics
- · Recite principles of the conversion of heat to work
- Distinguish entropy from exergy

Kompetenzen:

- Explain the structure and dimensions of the earth and the related heat potential,
- Give an outlook to the expected major future applications of geothermal energy.
- Name the main sources and amounts of heat deriving from the subsurface,
- Explain the temperature distribution inside the earth over space and time,
- Distinguish between the nuclear, thermal and solar heat sources within the earth's structure and their sustainability,

- Define the hydraulic characteristics of geothermal systems,
- Differentiate the temperature versus depth parameters of low temperature fields and sedimentary basins.
- Describe the main technical solutions for direct, indirect and combined electricity and heat production uses,
- Propose possible applications for available resource temperatures.
- Describe the interactions of geothermal energy conversion systems: reservoir-well-piping-plantreinjection
- Match the different power plant types and technical applications to corresponding reservoir conditions
- Identify the components of heat conversion technologies
- Develop technical solutions for given reservoir conditions, and regional or local energy demands.
- Compare the different cooling energy sources and choose the right cooling system for a site,
- Name the main elements for transmission and urban underground pipeline systems,
- · Define the impacts of plants on the environment,
- · Illustrate the phases and cumulative costs at various stages of development,

Contents

a)

- Global geothermal resources
- Elements of thermodynamics, fluid mechanics, and heat transfer applied to geothermal energy conversion systems
- Power plant technologies based on flash steam, direct steam, binary conversion systems, and hybrid systems
- · Cooling technologies
- District heating networks and direct uses
- Pumping the reservoir
- Hybrid uses (water desalination)
- Mine water applications
- Corrosion and scaling processes
- Social and environmental impacts
- Case studies
- Economics, finance, and risk analysis of a geothermal project

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English / German

Examination mode

• Written exam 'Geothermal Energy Systems' (60 Min., Part of modul grade 100 %, Optional term paper to obtain bonus points for the written exam (40 hours, max. 10 pages, processing time 4 weeks, deadline will be announced at the beginning of the semester) If the number of participants is <= 10, the examination can also be conducted orally.)

Requirements for the award of credit points

Passed final module examination: Written exam

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

modulo	Credite	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9th Sem.	1 semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Introduction	to 3D Materia	Is Characterization	a) 4 SWS (60 h)	a) 90 h	a) each winter
Techniques			u) i en e (ee ii)	u) ee n	
Module coord	dinator and le	cturer(s)	I		
Prof. Dr. Tong	Li				
a)					
Admission re	quirements				
none					
Learning out	come, core sk	ills			
By completing	the course, st	udents gain insight i	into a range of thre	e-dimensional nar	oscale and atomic
scale material	characterizatio	on techniques, e.g. 3	3D x-ray microscop	oy, electron tomogi	raphy and atom probe
tomography.	hey can descr	ibe the working prin	ciples of each tech	nique in detail, su	mmarize applications
in a vast of ap	plications, sucl	n as engineering all	oys, catalyst mater	ials, semiconducto	ors, etc. and solve
scientific ques	tions related to	material science by	y using three-dime	nsional material ch	aracterization
techniques. A	dditionally, stud	lents will understan	d three-dimensiona	al nanoscale and a	tomic scale material
characterizatio	on methods, wh	nich are currently ex	tremely important	in both industry an	d academia, and
achieve some	basic hands-o	n experience on sa	mple preparation a	nd sample analysi	s on one of these
techniques (de	epends on the	availability of instrur	ment).		
Contents					
a)					
a) • 3D Ener	gy-dispersive X	(-ray spectroscopy			
a) • 3D Ener • 3D-Field	gy-dispersive X	(-ray spectroscopy y			
a) • 3D Ener • 3D-Field • Atom pro	gy-dispersive X ion microscop bbe tomograph	(-ray spectroscopy y y			
a) • 3D Ener • 3D-Field • Atom pro • Electron	gy-dispersive X ion microscop bbe tomograph tomography	(-ray spectroscopy y y			
a) • 3D Ener • 3D-Field • Atom pro • Electron • X-ray tor	gy-dispersive X ion microscop bbe tomograph tomography nography	(-ray spectroscopy y y			
a) • 3D Ener • 3D-Field • Atom pro • Electron • X-ray tor • Focused	gy-dispersive X ion microscop be tomograph tomography nography ion beam slicit	(-ray spectroscopy y y ng/scanning electro	n microscopy		
a) • 3D Ener • 3D-Field • Atom pro • Electron • X-ray tor • Focused Educational f	gy-dispersive X ion microscop obe tomography tomography nography ion beam slici	(-ray spectroscopy y y ng/scanning electro ge	n microscopy		
a) • 3D Ener • 3D-Field • Atom pro • Electron • X-ray tor • Focused Educational f a) Seminar / L	gy-dispersive X ion microscop obe tomography tomography nography ion beam slicit form / Langua ecture with tute	(-ray spectroscopy y ng/scanning electro ge prial / English / Gerr	n microscopy		
a) · 3D Ener · 3D-Field · Atom pro · Electron · X-ray tor · Focused Educational f a) Seminar / L Examination	gy-dispersive X ion microscop obe tomography tomography ion beam slicit form / Langua ecture with tuto mode	(-ray spectroscopy y ng/scanning electro ge prial / English / Gerr	n microscopy nan		
 a) 3D Energination 3D-Field Atom provide the second strain of the second strain of the second strain strai	gy-dispersive X ion microscop obe tomography tomography ion beam slicin form / Langua ecture with tuto mode emester each s	C-ray spectroscopy y ng/scanning electro ge prial / English / Gerr	n microscopy nan ned a current topic	on which the stud	ent has to write a
a) · 3D Ener · 3D-Field · Atom pro · Electron · X-ray tor · Focused Educational f a) Seminar / L Examination · During the set five-page report	gy-dispersive X ion microscop obe tomography tomography ion beam slicit form / Languag ecture with tuto mode emester each so ort and give a ta	G-ray spectroscopy y ng/scanning electro ge prial / English / Gerr student will be assig alk (Percentage of th	n microscopy nan ned a current topic ne module grade 1	on which the stud	ent has to write a
 a) 3D Energination 3D-Field Atom production Electron X-ray tor Focused Educational fails a) Seminar / L Examination During the set five-page report Requirement 	gy-dispersive X ion microscop obe tomography tomography ion beam slicit form / Langua ecture with tuto mode emester each s ort and give a ta	C-ray spectroscopy y ng/scanning electro ge orial / English / Gerr tudent will be assig alk (Percentage of th d of credit points	n microscopy nan ned a current topic he module grade 10	on which the stud	ent has to write a
 a) 3D Energination 3D-Field Atom provide the second state of the secon	gy-dispersive X ion microscop obe tomography tomography ion beam slicin form / Langua ecture with tuto mode emester each so ort and give a ta s for the awar e examination:	C-ray spectroscopy y y ng/scanning electro ge prial / English / Gerr student will be assig alk (Percentage of the d of credit points semester assignme	n microscopy nan ned a current topic ne module grade 10 ents (Submission o	on which the stud 00 %) f report and holdin	ent has to write a g of seminar talk)
 a) 3D Energination 3D-Field Atom production Electron X-ray tor Focused Educational fails Bernination During the set five-page report Requirement passed module 	gy-dispersive X ion microscop obe tomography tomography ion beam slicit form / Languag ecture with tuto mode emester each s ort and give a ta s for the awar e examination: cability	G-ray spectroscopy y y ng/scanning electro ge prial / English / Gerr student will be assig alk (Percentage of the d of credit points semester assignme	n microscopy man ned a current topic ne module grade 1 ents (Submission o	on which the stud 00 %) f report and holdin	ent has to write a g of seminar talk)

- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Masterarbo	eit				
Master's The	sis				
Module number	30 CP	900 h	3. Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Masterarbe	eit			a) 900 h	a) each Sem.
Module coor Prof. DrIng. a) Prof. DrIn	dinator and leo Andreas Kilzer g. Andreas Kilz	c turer(s) er			
Admission re Compulsory, CP is still mi imposed upor	equirements compulsory ele ssing for a suc n admission mu	ctive and elective ccessful degree) st have been pas	e modules amountin from the Master's c sed.	g to at least 50 CF legree programme	? (a maximum of 40 and any conditions
Learning out The Master's problem in me	come, core sk thesis should sl echanical engin	ills how that the canc eering using scie	lidate is able to inde ntific methods within	pendently work on a a given period of ti	a challenging me.
On a higher le	evel the Master'	s thesis pursues	the following objectiv	/es:	
 The study mechan The study interdiscondition The study problem Study Study entry indepen 	dents are familia ical engineering dents are able to ciplinary), as we dents can transf s. s can transfer ki s possess enha dence and initia	ar with the most n g in the area of the o model and solve II as develop and fer knowledge/ski nowledge/skills to nced social comp ative	nodern methods and eir major field of stud e complex engineeri implement their own lls to concrete mech o concrete and new p petences relevant to	l procedures of engi dy and know applica ng problems (if nece n approaches. anical engineering/e problems. their training, with a	ineering sciences/ ation examples. essary engineering a particular focus on
Contents					
Various topics the supervisir reflect the sci can be taken	s from the Maste ng university tea entific standard into account. Be	er's programme, f icher. Assignmen of the degree pro oth theoretical an	typically based on th ts are always formul ogramme; if necessa d experimental tasks	e chosen focus or t ated by university to ry, suggestions for s can be worked on.	he research areas of eachers and should topics from students
Educational	form / Langua	ge			
a) Abschlussa	arbeit / German				
ExaminationAbschlussarIntermediate	mode beit 'Master's T or final present	hesis' (900 Std., l ation (approx. 30	Part of modul grade minutes)	100 %)	
Requirement • Passed • Success	s for the awar final module ex ful intermediate	d of credit points amination: Final p or final presenta	s paper ition		

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 30 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

The Master's thesis can also be written in English.

Materials for Aerospace Applications

Materials for Aerospace Applications

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9th Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Materials for	Aerospace Appli	cations	a) 4 SWS (60 h)	a) 90 h	a) each winter

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Marion Bartsch

a) Prof. Dr.-Ing. Marion Bartsch

Admission requirements

Recommended previous knowledge: recommended are basics in materials science and solid mechanics and english skills B1

Learning outcome, core skills

After successful completion of the module students can

- recapitulate which high performance materials and material systems are used for aerospace applications, how they are manufactured, and which microscopic mechanisms control their properties
- explain and apply procedures for selecting and developing material systems for aerospace components, considering the specific requirements
- decide which characterization and test methods to apply for qualifying materials and joints for aerospace applications and know how lifetime assessment concepts work
- · draft work flows from data acquisition to certification of aerospace components
- communicate, using technical terms in the field of aerospace engineering in English

Contents

a)

The substantial requirements on materials for aerospace applications are "light and reliable", in most cases for extreme service conditions. Therefore, specially designed materials and material systems are in use. Manufacturing technologies and characterization methods for qualifying materials and joints for aerospace applications will be discussed. Topics are:

- loading conditions for components of air- and space crafts (structures and engines)
- selecting and developing materials and material systems for service conditions in aerospace applications (e.g. aero-engines, rocket engines, thermal protection shields for reentry vehicles, light weight structures for airframes, wings, and satellites)
- degradation and damage mechanisms of aerospace material systems in service
- · characterization and testing of materials and joints for aerospace applications
- · concepts and methods for lifetime assessment
- · data handling from acquisition to certification of aerospace components

Educational form / Language

a) Lecture with tutorial / English / German

Examination mode

• Written exam 'Materials for Aerospace Applications' (120 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passed module examination: Written exam

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

script in English, additional literature announced during lecture

Multiscale Mechanics of Materials

Multiscale Mechanics of Materials

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9th Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Multiscale M	echanics of Mate	erials	a) 4 SWS (60 h)	a) 90 h	a) each winter

Module coordinator and lecturer(s)

Prof. Dr. Alexander Hartmaier

a) Dr. Rebecca Janisch

Admission requirements

Recommended previous knowledge: keine

Learning outcome, core skills

Students possess a fundamental understanding of the multiscale nature of the mechanical behaviour of materials and of the different approaches to take this into account in mechanical modelling of microstructures. They can identify the relevant length- and timescales of the microscopic processes that lead to meso-/macroscopic structure-property relationships. The students understand the principles of effective theory construction, coarse graining and homogenisation methods, and they can apply them to identify, analyse and model multiscale problems, such as plastic deformation, hardening behaviour, and fracture of microstructures. They are familiar with state of the art numerical and theoretical scale-bridging modelling methods. They can apply numerical tools on different length scales, and understand the underlying principles (atomistic modelling, discrete dislocation dynamics, crystal and continuum plasticity). Finally, students build up the skill to independently develop scale- bridging models that integrate all necessary scales and employ these models to describe and predict mechanical properties of materials under given conditions.

Contents

a)

- · Introduction to problems in materials mechanics that involve multiple length and time scales
- · Overview on concepts of concurrent and hierarchical multiscale modeling of materials
- Principles of effective theory construction and its realisability in numerical modeling (extracting and passing information in hierarchical models); coarse graining and homogenisation
- Bridging scales in plasticity
- Bridging scales in fracture
- Numerical models and technical aspects of hierarchical multiscale simulations (atomistic modeling, discrete dislocation dynamics, continuum and crystal plasticity)

Educational form / Language

a) Tutorial / Seminar / English / German

Examination mode

• Written exam 'Multiscale Mechanics of Materials' (120 Min., Part of modul grade 100 %, or oral exam (30 Min., wird zu Beginn der Lehrveranstaltung festgelegt))

Requirements for the award of credit points

Passed final module examination: Oral exam or written exam

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

number 5 CP 150 h 8th Sem. 1 Semester[s] no limitation Courses Contact hours Self-study Frequency a) a each sur Module coordinator and lecturer(s) Contact hours Self-study a) a each sur Module coordinator and lecturer(s) Prof. Dr. Francesca di Mare a) 4 SWS (60 h) a) 0 h a) each sur Admission requirements Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to d and analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical models • The students understand the the most relevant aspects of the flow of compressible fluids and a capable of making the correct assumption to simplify the corresponding mathematical models • The students can can assess the efficiency and accuracy of the programmed solver and the correct of the results • The students can design procedures to verify and validate the numerical results • Derivation of the conservation equations (Mass, Momentum and Energy) in differential form • Forms of the energy equation		Credits	WUIKIUau	Semester[s]	Duration	Group size
Courses a) Numerical Gasdynamics for Propulsion and Power Contact hours a) 4 SWS (60 h) Self-study a) 0 h Frequency a) each sur Module coordinator and lecturer(s) Prof. Dr. Francesca di Mare a) Prof. Dr. Francesca di Mare	number	5 CP	150 h	8th Sem.	1 Semester[s]	no limitation
a) Numerical Gasdynamics for Propulsion and a) 4 SWS (60 h) b) 0 h b) a) each sur Power Module coordinator and lecturer(s) Prof. Dr. Francesca di Mare a) Prof. Dr. Francesca di Mare a) Prof. Dr. Francesca di Mare a) Admission requirements Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to di analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical models • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can assess the efficiency and accuracy of the programmed solver and the correct of the results • The students can design procedures to verify and validate the numerical results • The students can design procedures to verify and validate the numerical results • The students can design procedures to verify and validate the numerical results Contents a) • Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics <t< th=""><th>Courses</th><th></th><th></th><th>Contact hours</th><th>Self-study</th><th>Frequency</th></t<>	Courses			Contact hours	Self-study	Frequency
Module coordinator and lecturer(s) Prof. Dr. Francesca di Mare a) Prof. Dr. Francesca di Mare Admission requirements Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to di and analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models • The students understand the the most relevant aspects of the flow of compressible fluids and a capable of making the correct assumption to simplify the corresponding mathematical models • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can design procedures to verify and validate the numerical results • The students can design procedures to verify and validate the numerical results • The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics • Derivation of the conservation equatio	a) Numerical G Power	asdynamics for H	Propulsion and	a) 4 SWS (60 h)	a) 0 h	a) each summe
 Prof. Dr. Francesca di Mare a) Prof. Dr. Francesca di Mare Admission requirements Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to diand analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore, understand how a flow solver for compressible fluids should be constructed. Particularly: The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models. The students understand the the most relevant aspects of the flow of compressible fluids and a capable of making the correct assumption to simplify the corresponding mathematical models. The students can translate mathematical models In a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	Module coordi	nator and lectu	rer(s)			
Admission requirements Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to de and analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models. • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can assess the efficiency and accuracy of the programmed solver and the correc of the results • The students can design procedures to verify and validate the numerical results Contents a) • Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics • Derivation of the conservation equations (Mass, Momentum and Energy) in differential form • Forms of the energy equation • Non-dimensional form of the conservation equations • Euler and Navier-Stokes Equations • Classification of the conservation equations (elliptic, hyperbolic, parabolic) • Definition of total quantities • Thermal and caloric state equations and thermodynamic relations • State variables • Variable transformation and jacobian matrices • Weak formulation of the conservation equations: discontinuities	Prof. Dr. France	esca di Mare				
Recommended previous knowledge: Prerequisites for a successful participation to the lectures: Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to di and analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical model scapable of making the correct assumption to simplify the corresponding mathematical models • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can assess the efficiency and accuracy of the programmed solver and the correc of the results • The students can design procedures to verify and validate the numerical results Contents a) • Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics • Derivation of the conservation equations (Mass, Momentum and Energy) in differential form • Forms of the energy equation • Non-dimensional form of the conservation equations • Euler and Navier-Stokes Equations • Classification of the conservation equations (elliptic, hyperbolic, parabolic) • Definition of total quantities • Thermal and caloric state equations and thermodynamic relations • State variables • Variable transformation and jacobian matrices • Weak formulation of the conservation equations; discontinuities	Admission rec					
Gasdynamics Thermodynamics Numerical Mathematics Fluid Mechanics Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to diand analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models. • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can assess the efficiency and accuracy of the programmed solver and the correct of the results • The students can design procedures to verify and validate the numerical results Contents a) • Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics • Derivation of the conservation equations (Mass, Momentum and Energy) in differential form • Forms of the energy equation • Non-dimensional form of the conservation equations • Euler and Navier-Stokes Equations • Classification of the conservation equations (elliptic, hyperbolic, parabolic) • Definition of total quantities • Thermal and caloric state equations and thermodynamic relations • State variables • Variable transformation an	Recommended	previous knowle	edge: Prereguisit	tes for a successful	participation to the	lectures:
Learning outcome, core skills After successfully completing the course the students master all theoretical and numerical tools to diand analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: • The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models • The students can translate mathematical models In a computed programme in a a structured a logical manner • The students can assess the efficiency and accuracy of the programmed solver and the correct of the results • The students can design procedures to verify and validate the numerical results Contents a) • Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics • Derivation of the conservation equations (Mass, Momentum and Energy) in differential form • Forms of the energy equation • Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) • Definition of total quantities • Thermal and caloric state equations and thermodynamic relations • State variables	Gasdynamics T	hermodynamics	Numerical Math	nematics Fluid Mech	nanics	
 After successfully completing the course the students master all theoretical and numerical tools to diand analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models. The students can translate mathematical models In a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	Learning outc	ome, core skills				
 and analyse the mathematical model governing the flow of a compressible gas mixture. Furthermore understand how a flow solver for compressible fluids should be constructed. Particularly: The students understand the physical principles and can translate them in a mathematical model capable of making the correct assumption to simplify the corresponding mathematical models The students can translate mathematical models In a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	After successfu	Ily completing th	e course the stu	dents master all the	oretical and nume	rical tools to derive
 The students understand the physical principles and can translate them in a mathematical mode. The students understand the the most relevant aspects of the flow of compressible fluids and a capable of making the correct assumption to simplify the corresponding mathematical models. The students can translate mathematical models In a computed programme in a a structured a logical manner. The students can assess the efficiency and accuracy of the programmed solver and the correct of the results. The students can design procedures to verify and validate the numerical results. Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	and analyse the understand how	Mathematical n wa flow solver for	nodel governing r compressible f	the flow of a compr luids should be con	essible gas mixture structed Particular	e. Furthermore, the
 The students understand the physical principles and standardize that and a transmission mathematical models The students understand the the most relevant aspects of the flow of compressible fluids and a capable of making the correct assumption to simplify the corresponding mathematical models The students can translate mathematical models In a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	The stude	ents understand t	he physical prin	ciples and can trans	late them in a mat	hematical model
 capable of making the correct assumption to simplify the corresponding mathematical models The students can translate mathematical models in a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	The stude	ents understand t	he the most rele	evant aspects of the	flow of compressib	ble fluids and are
 The students can translate mathematical models In a computed programme in a a structured a logical manner The students can assess the efficiency and accuracy of the programmed solver and the correc of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	capable o	f making the corr	rect assumption	to simplify the corre	sponding mathema	atical models
 Indicate manner The students can assess the efficiency and accuracy of the programmed solver and the correct of the results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	The stude	nts can translate	e mathematical n	nodels In a compute	ed programme in a	a structured and
 The students can design procedures to verify and validate the numerical results The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	 Iogical ma The stude 	inner ents can assess t	he efficiency and	d accuracy of the pr	ogrammed solver a	and the correctnes
 The students can design procedures to verify and validate the numerical results Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 	of the res	ults	no omolonoy and		ogrammed certer (
Contents a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities	 The stude 	nts can design p	rocedures to ve	rify and validate the	numerical results	
 a) Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	Contents					
 Review of the fundamentals of Fluid Mechanics, Gasdynamics and Thermodynamics Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	a) Duinn	6.41 . 6 I				
 Derivation of the conservation equations (Mass, Momentum and Energy) in differential form Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices 		of the fundament		nanics, Gasdynamic		amics
 Forms of the energy equation Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 		C (1	tion equations (I	Mass, Momentum a	nd Energy) in differ	rential form
 Non-dimensional form of the conservation equations Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 		of the conserva				
 Euler and Navier-Stokes Equations Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	Forms of a	n of the conserva	lion	oquoticaa		
 Classification of the conservation equations (elliptic, hyperbolic, parabolic) Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	 Forms of Non-dime 	n of the conserva the energy equal nsional form of the	tion ne conservation	equations		
 Definition of total quantities Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	 Derivation Forms of a Non-dime Euler and 	n of the conserva the energy equal nsional form of the Navier-Stokes E	tion ne conservation quations	equations	1	
 Thermal and caloric state equations and thermodynamic relations State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	 Forms of Non-dime Euler and Classifica 	n of the conserva the energy equal nsional form of the Navier-Stokes E ation of the conse	tion ne conservation equations ervation equation	equations ns (elliptic, hyperbol	lic, parabolic)	
 State variables Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities 	 Forms of Non-dime Euler and Classifica Definition 	n of the conserva the energy equal nsional form of the Navier-Stokes E ation of the conse n of total quantitie	tion ne conservation equations ervation equation es	equations ns (elliptic, hyperbol	lic, parabolic)	
Variable transformation and jacobian matrices Weak formulation of the conservation equations: discontinuities	 Derivation Forms of Non-dime Euler and Classifica Definition Thermal 	n of the conserva the energy equal nsional form of the Navier-Stokes E ation of the conse n of total quantitie and caloric state	tion the conservation Equations ervation equation es equations and t	equations ns (elliptic, hyperbo hermodynamic rela	lic, parabolic) tions	
Weak formulation of the conservation equations: discontinuities	 Forms of Non-dime Euler and Classifica Definition Thermal State var 	n of the conserva the energy equat nsional form of the Navier-Stokes E ation of the conse n of total quantities and caloric state iables	tion the conservation Equations ervation equation es equations and t	equations ns (elliptic, hyperbol hermodynamic rela	lic, parabolic) tions	
	 Forms of Non-dime Euler and Classifica Definition Thermal State var Variable 	n of the conserva the energy equat nsional form of the Navier-Stokes E ation of the conse n of total quantities and caloric state transformation a	tion ne conservation equations ervation equation es equations and t nd jacobian mat	equations ns (elliptic, hyperbol thermodynamic rela rices	lic, parabolic) tions	

Fundamentals of the spatial and temporal discretisation of hyperbolic problems
· Numerical treatment of dicsontinuities considering the example of the advection equation
 Varisou schemes and formulations (Roe, Lax-Wendroff, etc.)
Numerical treatment if the 1D Euler equations
Ideal gas model
Thermally perfect gas model
· Boundary conditions
· Theoretical formulation and implementation
· Stability and error analysis
Educational form / Language
a) Tutorial (2 SWS) / Lecture (2 SWS) / English
Examination mode
• Written exam 'Numerical Gasdynamics for Propulsion and Power' (120 Min., Part of modul grade 100 %,
If the number of participants is less than 5, the examination can also be conducted orally.)
Requirements for the award of credit points
Successfully passed examination (written exam)
Module applicability
MSc. Maschinenbau
Master of Science Mechanical Engineering
Weight of the mark for the final score
Percentage of total grade [%] = 5 * 100 * FAK / DIV
FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).
DIV: The values can be taken from the table of contents.

Further Information

The final mark consists exclusively of the examination mark. The lecture notes will be provided in english

Numerical Met	hods for Inter	nal Aerodynamics	Jaynannes		
Module number	Credits 5 CP	Workload 150 h	Semester[s] 8th Sem.	Duration 1 Semester[s]	Group size no limitation
Courses			Contact hours	Self-study	Frequency
a) Numerical M	lethods for In	ternal	a) 4 SWS (60 h)	a) 0 h	a) each summer
Aerodynamics					
Module coord Prof. Dr. Franc a) DrIng. Mol	inator and le esca di Mare nammed Sayy	e cturer(s) vari			
Admission reaction Recommended coordinate sys Thermodynam Stokes Equation	quirements d previous kno tems Linear A ics: heat and ons Programn	owledge: Calculus Jgebra: solving lin energy Fluid mech ning background: F	: integration, partial d ear systems Mechan nanics: compressibilit Python, matlab, etc.	lerivatives, Taylor s ics: momentum an y, laminar and turb	Series, and d force pulent flows, Navier-
Completing the for dynamic sy implement a si • The study of flow, a • The study approach	e course succ stems from th mulation of a ent understan nd is able to id ent analyzes a , with the abil	esssfully, the stud le numerical point flow model in a nu ds the principles o dentify the method and implements a ity to judge the acc	ent understands the of view. This allows t imber of methods. If discretization for co l/approach used in th workflow for a simula curacy and stability o	principles of comp the student to analy onservation laws, ir e simulation. ation using a nume f their implementa	uter simulations yze, derive, and n particular, equations rical method/ tion.
I he stude	ent recognize	s the difficulties an	id appropriate setups	for internal flows.	
a)					
 Review of 	f important m	odels in fluid mech	nanichs and thermod	ynamics: mass, he	at, and momentum
 Review of 	f important co	oncepts in partial d	ifferencial equations:	equation types an	d conservation laws
 Finite-diffe 	erence metho	od:			
# Order c	f approximati	on			
# Bounda	ry conditions				
# Solving	the linear sys	tem			
 Finite-vo 	lumes metho	d:			
# Volume	average				
# Interfac	e interpolatior	ı			
	:4				
# Flux lim	iters				
# Flux lim Time dis	cretization sc	hemes:			
# Flux lim Time dis # Order o 	iters cretization sc f approximatio	hemes: on			

Multi-step and multi-stage schemes
Courant-Friedrichs-Lewy stability condition
(Optional) Advanced topics:
Multi-grid method
Finite-element method
Optimization based simulation: physics-informed neural network
Educational form / Language
a) Tutorial (1 SWS) / Lecture (3 SWS) / English
Examination mode
• Written exam 'Numerical Methods for Internal Aerodynamics' (120 Min., Part of modul grade 100 %)
 Homework exercises (optional bonus points for the written exam are possible if the exercises are
completed before the written exam).
Requirements for the award of credit points
Passed final examination: Written examination
Passed homework exercises
Module applicability
no information
Weight of the mark for the final score
Percentage of total grade [%] = 5 * 100 * FAK / DIV
FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).
DIV: The values can be taken from the table of contents.
Further Information

Process Simulation of Energy Plants Process Simulation of Energy Plants					
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9th Sem.	1 Semester[s]	45
Courses a) Prozesssimulation energietechnischer Anlagen		Contact hours a) 4 SWS (60 h)	Self-study a) 90 h	Frequency a) each winter	
Module coord i Prof. DrIng. R a) Prof. DrIng	i nator and lectu oland Span . Roland Span	ırer(s)			
Admission rec Knowledge with which can typic content relevan	uirements n regard to the th ally be taken for t for energy tech	nermodynamic granted after o nnologies. No s	analysis of processe completion of a Bach pecific preconditions	s and plants in ene elor course with ar for participation.	ergy technologies, n appropriate extent o
 Learning outc After successful Building of to model of tools, Students in identify in Students of abstraction Students of Students of Students of Students of Students of Students of performance 	ome, core skills on completion of the on fundamental he existing and new can assess pow fluential parame can analyse and energy technolog can explain and n based on para know the mathe can use advance can assess the para	s the module (nowledge rega (discussed in er and efficience ters, assess the op gies, assess the rele ameter studies, matical and the ed simulation to performance ar and disadvant	arding processes in e the scientific literatur cy of plants and proce erating behaviour of evance of specific par ermodynamic foundat pols to solve complex and limits of simulation ages).	nergy technologie e) processes using esses in energy tec real and hypothetic rameters of a proc ions of process-sir tasks, tools and can criti	s, students are able g modern simulation chnologies and can cal processes and ess on a high level of nulation software, cally evaluate their
a) Starting from th different modul of processes in interface, nonlin introduced. Adv models for simp plant). The influ	e manual evaluations in pertinent B energy technologic near equation so vantages and dis ple processes (g nence of the most papes Options (g	ation of process achelor course ogies are derive olver, models for sadvantages of as turbine and st important ope	ses in energy technol es, the essential requi ed. The four main ele or specific component different solutions ar steam power-plants, erating parameters is	logy, which has be rements for softwa ments of such pro s, property packag e discussed. The s ORC process, hea explained using th	en dealt with in are for the simulation grams (graphical use ge) are exemplarily students set up at pump, solar power ne self-developed

models as examples. Options for a systematic variation of operating parameters are introduced. As special case the application of process-simulation tools for an assessment of completely new processes (scientific application) and for the validation of measured process parameters (process control in operating plants) is discussed.

Educational form / Language

a) Lecture with tutorial / German / English

Examination mode

• Written exam 'Process Simulation of Energy Plants' (120 Min., Part of modul grade 100 %, In case less than 10 students are enrolled, the written exam can be replaced by an oral exam (30 minutes) with 60 minutes preparation of the questions at a computer (60 minutes))

Requirements for the award of credit points

Passed module examination: written or oral exam, see above

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lecture and tutorials integrated (4 SWS); the module is offered in a bilingual mode. Supervision of the enrolled students can be offered in German and English in parallel.

Service Engineering

Service E	ingineering
-----------	-------------

Module number	Credits 5 CP	Workload 150 h	Semester[s] 8. Sem.	Duration 1 Semester[s]	Group size no limitation
Courses			Contact hours	Self-study	Frequency
a) Service Engineering			a) 3 hrs./week (45 h)	a) 105 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. Jens Pöppelbuß

a) Prof. Dr. Jens Pöppelbuß, Prof. Dr.-Ing. Bernd Kuhlenkötter

Admission requirements

Recommended previous knowledge: none

Learning outcome, core skills

After successful completion of the module,

- Students will be able to explain the opportunities and challenges of servitization in manufacturing, i.e., the transformation of manufacturing companies towards a growing service business.
- Students will be able to explain and differentiate between different types of industrial services and product-service systems.
- Students will be able to apply established frameworks and methods to analyze business models of firms and to develop exemplary approaches for innovative business models.
- Students will be able to apply customer-oriented methods to develop innovative service offerings.
- Students will be able to explain the importance of service quality and service excellence for business success.
- Students will be able to engage with current research results from the field of service engineering, communicate them to others and relate them to the state of the art of service research.

Contents

a)

- Servitization of Manufacturing
- · Industrial services, customer solutions and product-service systems
- · Digital services and smart services
- · Business models
- Frameworks and methods for analyzing, developing and communicating business models (Business Model Canvas, St. Gallen Business Model Navigator).
- Service engineering/design/innovation methods (e.g., personas, customer journey mapping, service blueprinting)
- Service quality
- Procedure models for service engineering

Educational form / Language

a) Tutorial (1 SWS) / Lecture (2 SWS) / English

Examination modes

• Written exam 'Service Engineering' (120 Min., share of module grade 100 %, or oral exam (20 min., share of module grade 100%); type of exam will be announced at the beginning of the semester.)

• Assignments during the course: Presentation of an academic article from the field of service research (group performance, presentation duration 15 minutes, workload per group member: 10 hours; possible dates will be announced at the beginning of the semester).

Requirements for the award of credit points

- Passed final module examination: written or oral examination
- Passed study-related tasks: Paper presentation

Module applicability

MSc. Sales Engineering and Product Management

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Solidificatio	on Processing	g			
Solidification Processing					
Module number	Credits 5 CP	Workload 150 h	Semester[s] 9th Sem.	Duration 1 Semester[s]	Group size no limitation
Courses			Contact hours	Self-study	Frequency
a) Solidificatior	Processing		a) 4 SWS (60 h)	a) 90 h	a) each winter
Module coord Prof. Dr. I. Stei a) Prof. Dr. I. S	inator and lectu nbach iteinbach	ırer(s)			
Admission ree	quirements I previous knowle	edge: keine			
 Learning outc Students character This inclu Furtherm principles 	ome, core skills will gain knowled istics. des the causes o ore, the Relation of alloy thermoo	s dge about differ of casting defec ship of casting dynamics and s	rent casting technologicts and strategies to a microstructure and p olidification will be in	gies, their applicati avoid defects. rocess conditions troduced	onand specific will bediscussed and
Contents a)					
 History of Shape-, p Directiona Mold mat Simulatio casing an different f products computer 	metal casing, fie pressure die-, con al solidification, r erial, molding an n of mold filling, d microstructure oundries special for casting- and	eld of application ntinuous-, preci apid solidification d recycling Mo solidification ar analysis is der ized on differer microstructuree	on and economic imp ision casting on, rheo- and tixo cas old filling and heat tra nd casting microstruc monstrated in the lab nt castingtechniques. evolution simulation is	ortance sing insfer (radiation an tureDuring the exe oratory and during The use of comme s demonstrated an	d conduction) rcises practical excursions to ercial software d trained on the
Educational for a) Tutorial (2 S	orm / Language WS) / Lecture (2	SWS) / Germa	an / English		
Examination r • Written exam exam (30 minu	node 'Solidification Pr tes) (Part of mod	ocessing' (120 dule grade 100	Min., Part of module %))	grade 100 %, or a	Iternative oral
Requirements Passed final m	o for the award o odule examinatio	of credit points	s m or oral exam		
Module applic no information	ability				
Weight of the Percentage of FAK: The weig DIV: The value	mark for the fin total grade [%] = hting factors can s can be taken fi	al score 5 * 100 * FAK be taken from rom the table o	/ DIV the table of contents f contents.	s (see also PO 202	1 §18).

Thermodynamics of Mixtures

Thermodynamics of Mixtures

-						
Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	8th Sem.	Semester[s]	no limitation	
Courses			Contact hours	Self-study	Frequency	
a) Thermodynamics of Mixtures - Lecture			a) 3 SWS (45 h)	a) 30 h	a) each summer	
b) Thermodyna	mics of Mixtures	- Group	b) 1 SWS (15 h)	b) 60 h	b) each summer	
Tutorials						

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Roland Span

a) Prof. Dr.-Ing. Roland Span

b) Prof. Dr.-Ing. Roland Span

Admission requirements

Recommended previous knowledge: Basics of thermodynamics, as they are commonly taught in Bachelor courses in Mechanical Engineering or equivalent subjects. No specific preconditions.

Learning outcome, core skills

After successful completion of the module

- Students can explain the specifics of thermodynamic properties of mixtures on a high level of abstraction,
- Students can challenge and assess new findings in the area of thermodynamic properties of mixtures,
- Students can utilize their knowledge on thermodynamic properties of mixtures to solve complex problems in energy and process engineering,
- Students can identify missing information in the field of thermodynamic properties, can access available information, and can assess found data critically,
- Students can assess the relevance of new research results in the field of thermodynamic properties of mixtures.

Contents

- a)
 - Calculation of thermodynamic properties for processes in energy technologies (equation of state models, properties of water and steam as special case, ideal mixture of real gases)
 - Thermodynamic properties of mixtures, representation as excess properties and as partial molar properties
 - Foundation of mixture effects on a molecular basis
 - Models for the excess Gibbs-enegry and for the activity coefficient
 - · Phase equilibria with liquids, solids and gases
 - Modern equations of state for mixtures

b)

Educational form / Language

a) Tutorial (1 SWS) / Lecture (3 SWS) / English

b) English

Examination mode

Written exam 'Thermodynamics of Mixtures' (150 Min., Part of module grade 100 %)

Requirements for the award of credit points

Passed final module examination: Written exam

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Module number	Credits 5 CP	Workload 150 h	Semester[s] 9th Sem.	Duration 1 Semester[s]	Group size no limitation
Courses a) Turbulenzmodellierung			a) 4 SWS (60 h)	Self-study a) 90 h	Frequency a) each winter
Module coo Prof. Romua a) Prof. Rom	rdinator and led ld Skoda uald Skoda	cturer(s)			
Admission Recommend Strömungsm Numerical M	requirements ed previous kno echanik), ideally ethods for intern	wledge: Fundame also Advanced F al aerodynamics	ental of Fluid Mechar Fluid Mechanics (Fort	nics (Grundlagen d tgeschrittene Strön	er nungsmechanik),
Learning ou After attenda CFD softwar to assess es detailed, also solutions of r	tcome, core sk ince, the student e. They have exp tablished method p interdisciplinary new problems.	ills s understand rec banded their com ds with regard to r methodological	ent turbulence mode petences of network accuracy, stability an competences and ba	ls, which are imple ed and critical thinl id effort. The stude ased on these, they	mented in common king and are able ents have achieved / can elaborate
a) • Review • Overvie • Introdu • Detaile • Hybrid • Wall tre • Lamina • Model a	of fluid dynamic ew over turbulen ction to Direct ar d presentation of models: Scale A eatment r turbulent transi additives for stag	al and numerical ce theory nd Large Eddy Sin f statistical turbule daptive (SAS) un tion	fundamentals mulation ence models (Eddy V d Detached Eddy (D ion and compressibil	/iscosity and Reyn ES) Simulation ity	olds Stress models
Educationa l a) Tutorial (2	form / Languag SWS) / Lecture	ge (2 SWS) / Germa	an / English		
Examination • Mündlich 'T German)	n mode Turbulence Mode	lling' (45 Min., Pa	art of modul grade 0 9	%, Oral exam in Er	nglish or optionally i
Requiremer Passed mod	i ts for the awar ule exam: Oral e	d of credit point xam	S		
Module app M.Sc. Mecha	licability anical Engineerin	g			
Weight of th Percentage of FAK: The we DIV: The val	ne mark for the f of total grade [%] eighting factors c ues can be taker	final score = 5 * 100 * FAK an be taken from n from the table o	/ DIV the table of contents f contents.	s (see also PO 202	1 §18).

Further Information

Manuscripts for lecture and exercise are available in both English and German. Also, the entire module will be made available in German as a video stream via Moodle. Further literature will be recommended during the lecture.