

RUHR-UNIVERSITÄT BOCHUM

RUHR – UNIVERSITÄT BOCHUM FACULTY OF MECHANICAL ENGINEERING

Master's Programme Mechanical Engineering

Specialisation Sustainable Energy Systems & Circular Process Engineering

Module Catalogue

Valid from summer semester 2024

In addition to the course schedules the module catalogue includes summaries of the contents of the modules. Only the module catalogue published on the website of the Faculty of Mechanical Engineering at the Ruhr-Universität Bochum is valid. Older module catalogues are to be found in the archive. Regular revisions of the module catalogue are to be expected which is why the module description valid in the semester of the last lecture is always decisive for the module examination.

Value of the module grade for the final grade

Percentage of the final grade [%] = "CP of module" * 100 * FAK / DIV

FAK = 1,0 for the modules of all study sections

DIV = 90

Modules

Advanced Topis of Experimental Micromechanics and Microtribology	6
Carbon Dioxide Capture from Industrial Processes	
Chemical Energy Storage and Carbon-Based Feedstock	12
Chemical Processes for Closed Carbon Cycles	
Circular Process Engineering	
Computational Fracture Mechanics	
Computer Aided Process Design	8
Demand and Supply in Energy Markets	21
Dynamic Structures and Active Control	
Energy Systems Analysis	
Fundamental Aspects of Materials Science and Microengineering	
Gasdynamics	
Geothermal Drilling Engineering and Subsurface Technologies	35
Geothermal Energy Systems	
Hydrogen Technologies	
Introduction to Fluid-Flow Measurement Techniques	43
Introduction to Three-dimensional Materials Characterization Techniques	45
Master's Thesis	
Materials for Aerospace Applications	49
Multiscale Mechanics of Materials	
Numerical Methods for Internal Aerodynamics	53
Process Design	
Process Simulation of Energy Plants	
Process Technology Laboratory	
Service Engineering	59
Specialized Laboratory Energy Technology	27
Thermodynamics of Mixtures	61
Turbulence Modelling	63

Index by areas of study

1) Specialisation M.Sc. Mechanical Engineering, ECTS: 40

Chemical Energy Storage and Carbon-Based Feedstock (5 ECTS, each winter semester)	12
Chemical Processes for Closed Carbon Cycles (5 ECTS, each summer semester)	15
Circular Process Engineering (5 ECTS, each summer semester)	17
Computer Aided Process Design (5 ECTS, each summer semester)	8
Demand and Supply in Energy Markets (5 ECTS, each summer semester)	21
Energy Systems Analysis (5 ECTS, each winter semester)	25
Specialized Laboratory Energy Technology (5 ECTS, each semester)	27
Process Technology Laboratory (5 ECTS, each semester)	29
Gasdynamics (5 ECTS, each winter semester)	33
Geothermal Drilling Engineering and Subsurface Technologies (5 ECTS, each winter semester)	35
Geothermal Energy Systems (5 ECTS, each summer semester)	37
Introduction to Fluid-Flow Measurement Techniques (5 ECTS, each summer semester)	43
Numerical Methods for Internal Aerodynamics (5 ECTS, each summer semester)	53
Process Simulation of Energy Plants (5 ECTS, each winter semester)	57
Thermodynamics of Mixtures (5 ECTS,)	61
Turbulence Modelling (5 ECTS,)	63
Hydrogen Technologies (5 ECTS, each semester)	40

2) STEM Modules M.Sc. Mechanical Engineering, ECTS: 15

Here you will only find the STEM modules offered by the Faculty of Mechanical Engineering. Module descriptions of other possible modules can be found in the corresponding areas/faculties.

Advanced Topis of Experimental Micromechanics and Microtribology (5 ECTS, each winter semester)	6
Carbon Dioxide Capture from Industrial Processes (5 ECTS, each summer semester)	.10
Computational Fracture Mechanics (5 ECTS, each winter semester)	19
Dynamic Structures and Active Control (5 ECTS, each summer semester)	23
Fundamental Aspects of Materials Science and Microengineering (5 ECTS, each summer semester)	31
Introduction to Three-dimensional Materials Characterization Techniques (5 ECTS, each winter semester)	45
Materials for Aerospace Applications (5 ECTS, each winter semester)	49

2) Scientific Denor M Sc. ME. ECTS: 20	
Service Engineering (5 ECTS, each summer semester)5	9
Process Design (5 ECTS, each summer semester)5	5
Multiscale Mechanics of Materials (5 ECTS, each winter semester)5	1

3) Scientific Paper M.Sc. ME, ECTS: 30

Master's Thesis (30 ECTS, each semester)	47
--	----

4) non-STEM Module M.Sc. Mechanical Engineering, ECTS: 5

Here you will only find the non-STEM modules offered by the Faculty of Mechanical Engineering. Module descriptions of other possible modules can be found in the corresponding areas/faculties.

Advanced Topics of Experimental Micromechanics and Microtribology

Advanced Topis of Experimental Micromechanics and Microtribology

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Advanced T	opis of Experimen	tal	a) 4 WLH (60 h)	a) 90 h	a) each winter
Micromechani	cs and Microtribol	ogy			

Module coordinator and lecturer(s)

Prof. Dr. Francesca di Mare

a) Dr. St. Brinckmann

Admission requirements

Learning outcome, core skills

After successful completion of the module, the students will be able to:

- Use and evaluate different experimental techniques and design new setups based on macroscopic and microscopic mechanical testing designs
- Use interpreted programming to extract advanced characteristics of micromechanical and microtribological data
- Derive equations for micromechanics and create numerical models that mimic the experimental characteristics and limitations
- Use statistics to generate uncertainty measures for mechanical experiments at the microscale; compare the analytical models with numerical approximations

Contents

a)

This modul discusses how micromechanics and microtribology can be used to extract advanced material phenomena of metal deformation at the microscale. Among other topics, this module will discuss:

- The history of experimental micromechanics using indentation and nanoindentation
- · Limitations of experimental micromechanics and microtribology
- File formats of experimental micromechanics, conversion and size limitations
- An interpreted computer languages and its use to investigate phenomena at the microscale
- Statistical uncertainty analysis based on the derivation of mechanical equations and discussion of uncertainty dependence and independence
- Numerical models that mimic experiments at the micrometer scale. Overview of continuum and fracture mechanics based models
- Design of numerical mechanical models and evaluation of their limitations. Comparison of these limitations with the statistical uncertainty of experiments
- Design of new micromechanical and microtribological experiments, evaluation of the expected stress state and possible crack formation

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English

Examination methods

• oral online exam, depending on the number of participants

Requirements for the award of credit points

passed oral exam

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

The lecture is given in the English language in live online lectures and practical work.

The course is designed for an optimal learning experience of 5-10 students.

Beispiele der simulationsgestützten Prozessentwicklung

Computer Aided Process Design

0011100.0017.0								
Module	Credits	Workload	Semester[s]	Duration	Group size			
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation			
Courses		/	Contact hours	Self-study	Frequency			
a) Beispiele d	ler simulationsges	stützten	a) 4 WLH (60 h)	a) 90 h	a) each summer			
Prozessentw	icklung							

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Marcus Grünewald

a) Dr.-Ing. Maria Polyakova

Admission requirements

Recommended previous knowledge:

basic knowledge in Aspen Plus® or other flowsheet simulation tool in chemical

engineering

Learning outcome, core skills

After successful completion of the module, students are able to

- Develop processes for the manufacture of chemical products and assess their impact on the environment and society,
- Identify the necessary information needs for these tasks, find sources of information, and obtain the relevant information,
- Implement a complex process in common flowsheet simulation environment (Aspen Plus[®]), perform simulations and critically evaluate their results using parameter and sensitivity analysis, and derive further need for action from the results,
- Familiarize themselves independently and systematically with new tasks in a short period of time.

Contents

a)

The course teaches simulation methods for complex processes in the chemical industry. In particular, the following topics are addressed:

- Tasks of and requirements for successfully implement and run process simulations,
- Simulation types and their advantages and disadvantages,
- Criteria for selecting models to represent common unit operations, as well as the required data basis
- and limitations of the models,
- Solution strategies for complex recycle loops,
- Process analysis tools such as sensitivity analysis, design specs and optimization,
- Simulation-based options for heat and resource integration,
- Analysis and preparation of simulation data for the presentation of relevant results.

Educational form / Language

a) Tutorial (2 WLH) / Lecture (2 WLH) / German / English

Examination methods

• Oral exam 'Computer Aided Process Design' (45 Min., Part of modul grade 100 %, in small groups)

Requirements for the award of credit points

Passed final module exam: Oral examination in small groups

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Carbon Dioxide Capture from Industrial Processes

Carbon Dioxide Capture from Industrial Processes

	•				
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	summer Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Carbon Dio	xide Capture from	n Industrial	a) 4 WLH (60 h)	a) 90 h	a) each summer
Processes					

Module coordinator and lecturer(s)

Prof. Dr.-Ing. V. Scherer

a) Priv.-Doz. Dr.-Ing. Martin Schiemann

Admission requirements

Learning outcome, core skills

Objective: The lecture provides a basic understanding of CO2 as a greenhouse gas and associated CO2 sources. The state of development and perspectives of separation processes are discussed. The influence of separation on transport and storage will be addressed and economic, legislative and social aspects will be discussed.

Competences: Students acquire the ability to evaluate and critically classify the individual process steps of CO2 capture and storage or use. You will be able to make references to other lectures and to apply what you have learned there. The newly acquired knowledge is applied in a smaller project work accompanying the lecture.

Contents

a)

Based on the definition, causes and effects of climate change, types of CO2 sources and alternative energy sources are considered. The concept of CO2 capture and storage is explained. Technical measures for CO2 capture such as post-combustion, oxy-fuel combustion and pre-combustion capture will be discussed. Legal aspects and costs are considered. Transport by pipeline and ship is dealt with. Risks, security aspects and monitoring are discussed for the mentioned procedures. Geological storage and storage in the ocean are considered as storage types. Carbonate formation and the material use of CO2 are discussed. Finally, component costs and carbon capture-and-sequestration usage scenarios are considered.

Educational form / Language

a) Tutorial (2 WLH) / Lecture (2 WLH) / English

Examination methods

• Written exam 'Carbon Dioxide Capture from Industrial Processes' (90 Min., Part of modul grade 100 %, if there are less than 10 registrations the examination mode can be switched to an oral examination)

Requirements for the award of credit points

Passed final exam: Written exam

Module applicability

Msc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Chemical Energy Storage and Carbon-Based Feedstock

Chemical Energy Storage and Carbon-Based Feedstock

Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation	
Courses	L		Contact hours	Self-study	Frequency	
a) Chemical E	Energy Storage a	and Carbon-Based	a) 4 WLH (60 h)	a) 90 h	a) each winter	
Feedstocks						
	rdinator and le	cturor(s)	1	1	I	

Module coordinator and lecturer(s)

Prof. Thomas Ernst Müller

a) Dr. rer. nat. Berthold Fischer

Admission requirements

Recommended previous knowledge:

Previous knowledge of chemistry is recommended

Learning outcome, core skills

Today's energy and chemical feedstock supply and storage systems are based to a large extent on fossil resources. They need to be converted in the next decades into energy supply and feedstock systems that rely to a large extend on renewable feedstock. Most renewable sources are of intermittent nature and this will lead to completely new system design requirements to maintain reliable energy systems and a continuous feedstock supply for the chemical industry and other industries. Knowledge of these new systems and their development and implementation will be essential for graduates in the future.

Understanding that the reliability of the transformed energy systems and feedstock supply chain will rely on to a large extent on the three pillars energy storage, renewable (over)production, and carbon-based feedstocks

Ability to assess the different possibilities to deal with and balance the time-offset between power generation and power demand, know different technologies to store energy and distinguish different storage solutions and applying them to a given storage or feedstock

Understanding of the different types of carbon-based feedstocks and the application and industry where they are most suitable.

Ability to do a basic life cycle assessment of chemical feedstock supplies and chemical storage systems and their respective chances and boundary conditions for large scale adoption and implementation.

After successful completion of the module students should be able to

- have enhanced subject and method competences in the area of chemical energy storage and carbonbased feedstocks
- be familiar with current developments and technical principles in the area of chemical energy storage and carbon-based feedstocks
- compare different chemical energy storage concepts and carbon-based feedstocks and assess the suitability of these concepts in a process-chain analysis and under consideration of process technology aspects and applications
- assess and discuss thermodynamic and kinetic aspects of chemical energy storage and carbon-based feedstocks
- explain, estimate and calculate potentials, energy densities and efficiencies of storage technologies and concepts

- be familiar with interdisciplinary thinking at the interface of engineering and chemistry and can tackle actual and future problem definitions in the chemical industry, in particular regarding sustainability and use of renewable resources such as CO2and others
- enter industrial R&D in a cutting-edge field in the area of the "Energiewende" and "Wasserstoffrepublik Deutschland"

Contents

a)

Since the beginning, human beings have made use of energy storage; history of energy storage from the perspective of the carbon cycle

- Thermodynamic basics of chemical energy storage
- Overview of energy storage technologies (including non-chemical)
- · Technology and characteristics of conventional power plants
- Biogenic energy carriers; photosynthesis as the first energy storage process; fossil energy as a form of ancient biomass; solid (wood, coal), fluid (oils, crude oil) and gaseous (natural gas) biogenic energy carriers
- Chemical energy carriers in the energy system, power-to-gas (e.g. methane) and power-to-liquid (e.g. methanol); energy storage *via* fuels
- Electrochemical basics and applications for electrochemical energy storage; systems for electrochemical energy conversion and storage (batteries, electrolysis, fuel cells)
- Hydrogen storage technologies (generation, compression, liquefaction, adsorption, chemical binding to a carrier)
- Energy storage as heat
- Energy scenarios and modelling; Life Cycle Assessment
- What is a Feedstock? Renewable *vs.* depleting feedstock; renewable carbon-based feedstocks, CO2, biomass, biocoal; current feedstock consumption
- Value chain of fuels and chemicals; agricultural and industrial applications
- Renewable carbon-based feedstock for energy; biofuels from first generation corn-based, ethanol, biodiesel; second generation biofuels, cellulosics, oils, grasses; third and fourth generation, biofuels, algae
- Chemical conversion routes for carbon dioxide
- Biorefinery; production of aromatics from lignin; renewables as feedstock for polyesters, polycarbonates and polyurethanes

Educational form / Language

a) Tutorial (2 WLH) / Lecture (2 WLH) / English / German

Examination methods

• Written exam 'Chemical Energy Storage and Carbon-Based Feedstocks' (90 Min.ungraded, If the number of participants is less than 10, the examination may be conducted orally)

• Presentation (either in German or English) on a technical process (topics and dates will be determined in the course tutorial).

Requirements for the award of credit points

- Passed final module exam: written exam
- Presentation on a technical process (topics and dates will be determined in the course)

Module applicability

M. Sc. Mechanical Engineering

M. Sc. Sales Engineering and Product Management

M. Sc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lecture English and German, exercises preferably German but also English possible

Chemical Processes for Closed Carbon Cycles Chemical Processes for Closed Carbon Cycles						
Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation	
Courses			Contact hours	Self-study	Frequency	
	Processes for Clo	osed Carbon Cycle		a) 90 h	a) each summer	
Prof. Thoma	ordinator and le s Ernst Müller mas Ernst Müller					
Recommend Basic unders reaction eng	-	ical concepts is re ical process engin	commended, as well eering	as previous knowle	edge of chemical	
Knowledge o	of the main chem	ical-technological	conversion processe and renewable raw n		cycles, sustainable	
Ability to fur scale impler	-	late and evaluate	reactor models with	regard to boundary	conditions and larg	
	•	pseudo)homogene cable framework o	eous and heterogened conditions.	ous catalytic reactio	ns on a large-	
After succes	sful completion o	of the module, stu	dents			
particu • Detern • Compe and ac proces	llar heterogeneou nine kinetic data f etently apply (pse celerated approa s technology und	us catalytic reaction for the design of re eudo)homogeneou ches in order to op ler production eng	ing design of reactor ons for chemical proc eactors from reactior s and heterogeneous otimally select and d ineering specificatior pose and integrate th	esses in closed carl n engineering measu reactor models for esign chemical reac ns and economic bou	bon cycles, urements, different reactions ctors in terms of undary conditions,	
Contents						
materia • Renew • Renew • Chemie	al sources. able raw materia able carbon-base cal processes for	lls, including CO ₂ , ed feedstock for er	and utilization of rene biomass, biochar as hergy generation. cles, industrial applic	a feedstock for cher	nical production.	
	ed processes. Port phenomena i	n heteroaeneous c	atalytic reactions an	d in multiphase syst	tems.	
			in the second of	:		

- Micro- and macro-kinetics of different reaction systems, especially heterogeneous catalytic reactions.
- Apparatus for (pseudo)homogeneous and heterogeneous catalytic reactions.
- Setting up of calculation modules with MATLAB or comparable software for calculating, graphically representing and optimizing physicochemical processes in chemical reactors.

Educational form / Language

a) Tutorial (2 WLH) / Lecture (2 WLH) / English

Examination methods

• Written exam 'Chemical Processes for Closed Carbon Cycles' (120 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passed final module examination: written exam

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Environmental Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Circular Proc	-	Circular Process Engineering Circular Process Engineering						
Module number	Credits 5 CP	Workload 150 h	Semester[s] 8. Sem.	Duration 1 Semester[s]	Group size no limitation			
Courses a) Circular Process Engineering		a) 4 WLH (60 h)	Self-study a) 90 h	Frequency a) each summer				
	rdinator and le Manfred Renner illip Biessey	• •						
	requirements							
interdis	ciplinary challer	nges for circular pi	dary conditions of the rocess engineering	1	-			
materia • apply the process • identify	ses and evaluate boundary condi	rocess industry ented in the lectur them regarding e	re for process balanci stablished sustainabi ns of the sustainable	ing and scaling in re lity indicators	lation to selected			
materia • apply the processes • identify and derection Contents a) The course and thus the transferection technologies modes of the heat transferection to derive scars	al cycles in the p he methods pres ses and evaluate boundary condi- rive scenarios for addresses techno sformation of th for plastics are considered tech	rocess industry eented in the lecture them regarding e tions and limitation r large-scale imple ologies and proces is sector towards discussed as example inologies and proces well as the balance and design approac	re for process balanci stablished sustainabi ns of the sustainable	ing and scaling in re lity indicators technologies and pr ial cycles in the pro r Economy. For this the lectures, basic ted; based on this, re sses will be conside	elation to selected rocesses considered cess industry and purpose, recycling ideas and operation elevant material and ered in detail in order			

a) Project / Lecture (2 WLH) / English

Examination methods

• Final thesis 'Circular Process Engineering' (90 Std., Part of modul grade 100 %, Group work)

• Submission of a documentation on the group work (details will be given in the first lecture)

Requirements for the award of credit points

• Passed module examination: Group work

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen
- Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Module number	Credits 5 CP	Workload 150 h	Semester[s] 9. Sem.	Duration 1 Semester[s]	Group size
Courses	5.01	10011	Contact hours	Self-study	Frequency
	ional Fracture M	echanics	a) 4 WLH (60 h)	a) 90 h	a) each winter
Prof. Dr. Ale:	ordinator and le xander Hartmaie lexander Hartma	r			
Recommend	requirements ed previous knov edge about solid	vledge: mechanics and pla	asticity		
materials an ductile failue a finite elem types of frac are able to d	d geometries. Ba e of materials, the ent environment. ture models, to s iscriminate betw	ised on the acquire ey are enabled to o They gain suffieci tudy the relevant	r simulate fracture inded understanding of t choose appropriate fr ent knowledge about literature independer nere cracks in a struc ole,respectively.	he different types of acture mod-els and the theoretical back ntly. On an engineer	f brittle fracture and to implement them kground of the diffre ing level, the studen
Contents a) Subject aims	5				
Phenomenol	.ogy of fracture/F	racture on the ato	omic scale		
Concepts of	linear elastic fra	cture mechanics			
Concepts of	elastic-plastic fra	acture mechanics			
R curve beha	avior of materials	i			
Concepts of	cohesive zones (I	CZ), extended finit	e elements (XFEM) a	nd damagemechani	CS
Finite eleme	nt based fracture	e simulations for s	tatic and dynamic cra	acks	
Application t	o brittle fracture	& ductile failure f	or different geometri	es and loadingsitua	tions
	I form / Langua 2 WLH) / Lecture	ge (2 WLH) / English	/ German		
Examinatio	am 'Computation		nics' (120 Min., Part o nteil an der Modulnot	-	%)
		5 () (

MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Demand and Supply in Energy Markets

Demand and Supply in Energy Markets

	11 5 5.	,			
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Demand and Supply in Energy Markets			a) 4 WLH (60 h)	a) 90 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. rer. pol. Valentin Bertsch

a) Prof. Dr. rer. pol. Valentin Bertsch

Admission requirements

Recommended previous knowledge:

Recommended prior knowledge: Basic knowledge of energy economics, such as that covered in the B.Sc. module Energy Economics. Furthermore, solid prior knowledge of investment appraisal is advantageous. For participation in the exercises, a (mobile) computer with a spreadsheet program (e.g. Excel) is advantageous.

Learning outcome, core skills

After successful completion of this module the students are able to:

- name different types of energy markets and explain their purpose and functionality.
- name the main technological, socio-economic and political drivers of energy demand and explain how they each change energy demand over time or between energy carriers.
- assess how the expansion of renewable energy sources, energy efficiency and energy systems integration across sectors and scales impact energy demand and supply within and across energy carriers.
- apply the concepts learnt to complex case studies, analyse and interpret the corresponding results and draw conclusions for the transformation of the energy system.
- work independently in project groups and present results of their group work in an understandable way.

Moreover, the students will have

- developed the ability to think in a networked and critical way and are able to select and apply established methods and procedures,
- acquired in-depth and interdisciplinary methodological competence and are able to apply it in a situationally appropriate manner.

The students practice scientific learning and thinking and can

- develop complex problems in technical systems in a structured way and solve them in an interdisciplinary way using suitable methods,
- transfer knowledge/skills to concrete systems engineering problems.

Contents

a)

- Basics of economics
- Fundamentals of energy markets

- Energy demand:

- Energy demand by sector and energy carriers at global and regional level
- Bottom-up analysis of energy demand

• Top-down analysis of energy demand

- Energy supply:

- Investment appraisal
- Investing in supply expansion

- Group work on complex case studies focussing on how policy, regulation and markets affect energy demand (between sectors, over time) and supply

During the lecture and exercise, students work in project groups on concrete case studies, prepare a written paper and present their results at the end of the term.

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English

Examination methods

Written exam 'Demand and Supply in Energy Markets' (90 Min., Part of modul grade 100 %, onsite or online)
Course-related tasks: Group work (40 hours, deadlines will be announced at the beginning of the semester)

(If the group work is completed before the final module exam, optional bonus points are possible for the exam).

Requirements for the award of credit points

- Passed written exam (Note: The grade is based on the written exam only)
- Successful completion of the group work (details will be announced at the beginning of the semester)

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

•	Structures an uctures and Acti	d Active Contr ve Control	ol		
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation
Courses	L		Contact hours	Self-study	Frequency
a) Dynamic Structures and Active Control			a) 3 WLH (45 h)	a) 105 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. Tamara Nestorovic

a) Prof. Dr. Tamara Nestorovic

Admission requirements

Basic knowledge of control systems is of advantage

Learning outcome, core skills

The students acquire an overall competence in fundamental methods of active structural

control. After successfully completing the course, the students are able to recognize the problems in practice and to apply the acquired knowledge in solving engineering problems in the field active control of mechanical structures, with the focus on active vibration control. In particular, the students:

- have basic knowledge in behavior and modeling of piezoelectric materials for applications in smart structures and active systems
- have knowledge in model development of mechanical structures for the control system design (linear time invariant systems in the state-space and transfer function form)
- are able to perform the model-based system analysis in time and frequency domain
- are able to design basic control structures with compensator and feedback gain systems
- are able to independently simulate control systems (PID and pole placement controller)
- have knowledge in discrete-time control systems
- are able to use Matlab/Simulink software and toolboxes for the control system analysis, design and simulation

Contents

a)

The course presents an overall insight in the modeling and control of active structures and systems. Basic terms and definitions are introduced along with presentation of the potential application fields. For the purpose of the controller design for active structural control, the basics of the control theory are introduced: development of linear time invariant models, representation of linear differential equations systems in the state-space form, controllability, observability and stability conditions of control systems. The parallel description of the modeling methods in structural mechanics enables the students to understand the application of control approaches. For actuation/sensing purposes multifunctional active materials (piezo ceramics) are introduced as well as the basics of the numerical model development for structures with active materials. Control methods include time-continuous and discrete-time controllers in the state-space for multiple-output systems, as well as methods of the classical control theory for single-input single output systems. Differences and analogies between continuous and discrete time control systems are specified and highlighted on the basis of a pole placement method. Closed-loop controller design for active structures is explained. Different application examples and problem solutions will show the feasibility and importance of the active structural systems development. The students also get insight into basics of

active structural health monitoring. Within this course the students learn computer aided controller design and simulation using Matlab/Simulink software. Students will implement the acquired knowledge in the framework of a seminar paper related to the controller design supported by Matlab Software.

Educational form / Language

a) Lecture with tutorial / English

Examination methods

• Written exam 'Dynamic Structures and Active Control' (90 Min., Part of modul grade 100 %)

• Homework – Seminar paper based on the computer exercises; deadlines will be announced at the beginning of the semester

Requirements for the award of credit points

• Passed final module examination and passed Seminar paper

Module applicability

MSc Maschinenbau

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lectures with exercises, computer exercises and tutorials (3h / week) / English

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation
Courses a) Energy Sys	stems Analysis		Contact hours a) 4 WLH (60 h)	Self-study a) 90 h	Frequency a) each winter
Prof. Dr. rer.	rdinator and le pol. Valentin Ber er. pol. Valentin E	rtsch			
Recommend Recommend module Ener appraisal are	gy Economics. F advantageous.	lge: Basic knowled urthermore, solid	lge of energy econom prior knowledge in op	perations research a	s well as investment
students war	nt to work on the	e exercises outside	If possible, these take the CIP pool hours, t model, which is provi	hey need a (mobile)	
 name c differer explain apply s interpre discuss for imp Moreover, the develop establis acquire situatio The students develop interdis 	ategories of ene at categories. and apply appro- elected methods et results from e strengths and v rovement. e students will h bed the ability to shed methods ar d in-depth and ir nally appropriat practice scienti o complex proble	rgy systems mode baches for generat s and models to pr nergy systems mo veaknesses of the ave think in a network of procedures, nterdisciplinary me e manner. fic learning and th ems in technical sy ing suitable metho	stems in a structured	nodel input data in a unit commitment of usions to support de sused and to discus nd are able to selec ence and are able to d way and solve the	a structured way. optimisation). ecision making. s and derive potentia t and apply o apply it in a
Contents					
a)					
,	d Simulation of I	Energy Systems			

- Optimal unit commitment (short-term planning)
- Optimal capacity expansion (long-term planning)
- Scenario planning approaches
 - Introduction to scenario planning
 - Combination of scenario planning and power systems analysis
- Investment appraisal
- Selected case studies

Decision Analysis and Assessment of Strategies

- Types of decision environments and models
- Structuring decision problems
 - Generating objectives and hierarchies
 - Generating and preselecting alternatives
- Preference elicitation
- Aggregation functions and sensitivity analysis
- Selected case studies

During the exercises, students work on concrete case studies using an open source energy systems model to be installed on their (mobile) computers, and practise preparing input data, processing model results and drawing conclusions.

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English

Examination methods

• Written exam 'Energy Systems Analysis' (90 Min., Part of modul grade 100 %, onsite or online)

• Assignments accompanying the course: Computer tutorials / exercises (details will be announced at the beginning of the semester).

Requirements for the award of credit points

- Passed written exam (Note: The grade is based on the written exam only
- Successful completion of the computer exercises (details will be announced at the beginning of the semester)

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Fachlabor Energietechnik Specialized Laboratory Energy Technology							
Module	Credits	Workload	Semester[s]	Duration	Group size		
number	5 CP	150 h	8./9. Sem.	1 Semester[s]	50		
Courses			Contact hours	Self-study	Frequency		
a) Fachlabor Energietechnik			a) 2 WLH (30 h)	a) 120 h	a) each sem.		
				u) 120 m	u) cuon sent.		

Module coordinator and lecturer(s)

Dr.-Ing. David Engelmann

a) Prof. Dr.-Ing. V. Scherer, Prof. Dr. Francesca di Mare, Prof. Romuald Skoda, Prof. Dr. rer. pol. Valentin Bertsch

Admission requirements

none

Learning outcome, core skills

After successful completion of the module, students are able to

- explain the functionality, the field of application as well as the underlying physics of the setups presented in the experiments
- analyse and proof gathered experimental data
- prepare, illustrate and present experimental results
- independently work out solutions to questions related to the particular experiments

Contents

a)

The chairs Energy Technology (LEAT), Thermal Turbomachinery and Aero Engines (TTF), Energy Systems and Energy Economics (EE) as well as Hydraulic Fluid Machinery (HSM) offer a specialized laboratory to students of the master's programme Mechanical Engineering in each winter and summer semester. By participating in five experiments within one semester, students are taught interesting and innovative techniques in the energy sector. The portfolio includes, among others, the following experiments, which can change from summer to winter semester:

- Determination of the calorific value of a solid fuel using a calorimeter (LEAT)
- Flow measurement using Laser Doppler Anemometry (LEAT)
- Elemental analysis (LEAT)
- Experimental determination of flow parameters of a compressor profile (TTF)
- Performance testing of a screw compressor (TTF)
- Determination of the engine characteristics of a radial compressor stage (TTF)
- Function and possible field of application of a gas engine driven combined heat and power plant (EE)
- Cavitation in centrifugal pumps (HSM)
- Numerical test rig for centrifugal pumps (HSM)
- Measurement oft pressure distribution around a NACA profile (HSM)

Educational form / Language

a) Internship / German

Examination methods

Compulsory attendance

Requirements for the award of credit points

- Participation in the preliminary meeting
- Participation in all 5 experiments offered within one semester
- Passed pre-tests for all 5 experiments offered within one semester
- Passed detailed report of the first assigned experiment
- Passed presentation of the second assigned experiment

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Interested students register for the specialized laboratory in FlexNow within 6 weeks before the beginning of the semester.

Fachlabor Verfahrenstechnik Process Technology Laboratory							
Module	Credits	Workload	Semester[s]	Duration	Group size		
number	5 CP	150 h	8./9. Sem.	1 Semester[s]	40		
Courses			Contact hours	Self-study	Frequency		
a) Fachlabor Verfahrenstechnik			a) 2 WLH (30 h)	a) 120 h	a) each sem.		

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Eckhard Weidner

a) Dr.-Ing. Stefan Pollak

Admission requirements

Recommended previous knowledge:

All students with admission to the master's program in mechanical engineering are eligible to participate.

Learning outcome, core skills

Subject-specific laboratories in the Master's program generally serve to acquire the skills necessary for entry into experimental (subject-specific) scientific work. Since the relevant practical skills depend to a large extent on the chosen focus, subject-specific laboratories are offered. In the specialised Process Technology Laboratory, the focus is on basic unit operations and the acquisition and evaluation of measurement data.

After the successful completion of the module, the students

- practice scientific thinking, learning and working in a more in-depth form.
- are familiar with the comprehensive engineering fundamentals in the area of their major field of study and are able to apply these to subject-specific problems.
- have practical skills in the use of measurement setups and experimental equipment.
- present their own experimental results and are proficient in recording and processing measurement results.
- possess both disciplinary and interdisciplinary methodological competence and are able to apply these in a manner appropriate to the situation.

Contents

a)

In the specialised laboratory, students of the master's program in mechanical engineering with a specialization in energy and process engineering, learn basic operations of process engineering and the associated measurement and analysis technology.

The laboratory consists of 6 experiments, which are regularly updated and can therefore vary. Which experiments are offered depends on the availability of equipment and supervisors. The experiments are different in summer and winter semesters. Currently available experiments are:

Vapor Pressure / Particle Image Velocimetry / Orifice Flow / Bubble Column Viscosimetry / Particle Technology / Heat Exchangers / Density Measurement Fluidised Bed / Spray Drying / Boiling Equilibrium / Rectification

The laboratory is absolved in groups. A group ideally consists of four students. All experiments must be prepared using the script provided. At the beginning of each experiment, this preparation will be checked in

an oral entrance examination. As a follow-up, each group prepares a protocol or gives a presentation for each experiment.

Educational form / Language

a) Internship / German / English

Examination methods

• Internship 'Process Technology Laboratory' (6 Mon., Part of modul grade 100 %, Experimental protocols or presentation of the results)

• Anwesenheitspflicht - Vorbereitung, Versuchsbeteiligung und Nachbereitung

Requirements for the award of credit points

Preparation, participation in the experiment and follow-up are prerequisites for receiving a grade. To pass the laboratory, all 6 experiments must be passed. The student will receive an overall grade for all 6 protocols or presentations.

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Module number	Credits 5 CP	Workload 150 h	Semester[s] 8. Sem.	Duration 1 Semester[s]	Group size no limitation
Courses a) Fundamer and Microeng		laterials Science	Contact hours a) 4 WLH (60 h)	Self-study a) 90 h	Frequency a) each summer
Prof. DrIng.	rdinator and le Gunther Eggele ng. Gunther Egge	r	Li, Prof. DrIng. Alfre	ed Ludwig	
	requirements ed previous knov	vledge:			
Learning ou The students	itcome, core sk s will learn:	kills			
four ca to use to objective importa to apprend temper shape r that the in this a technol to fami	se studies. the methodology ve to identify new ant role of micro eciate the applie ature service) ar memory implants ere is plenty of sp area is vital for po togy. liarize themselve re of materials s	of combinatorial r v alloy composition engineering in this d side of fields like nd shape memory a s). pace for improving rogressing the field	determining function materials research to ns and to invent new s respect. high temperature m alloys (acceptance cr existing and inventin d and for technologic language, which is u ngineering. The lectu	assess material lib materials. They will naterials (lifetime of riteria for shape men ng new materials, ar ral success in mater	araries with the appreciate the components in high mory actuators and ad that progress ials science and c and technical
a) The students diagrams, dif materials res intermetallic	fusion, strength, search and featu phases (IPs), sir	physical propertie re fascinating stru ngle crystal Ni-bas	s science concepts (e es) to four material cl ctural and functional e superalloys (SX) an estructures and prope	asses, which are in properties: high en nd shape memory al	the focus of todays tropy alloys (HEAs), loys (SMAs). These

Key materials science concepts from the fields of solid state physics (crystal structures and crystal defects), thermodynamics (thermodynamics of mixtures), kinetics (diffusion) and mechanics (uniaxial testing, fracture mechanics) will be reviewed. Emphasis is placed on the importance of the strong link between elementary atomistic, crystallographic, thermodynamic/kinetic and microstructural processes and the functional and

structural properties of materials/components on the macro scale. The following subtopics will receive special attention:

- Importance of atoms and electrons in materials engineering and the transition from atoms to alloys and from alloys to components
- Thermodynamic concepts in materials engineering and fundamentals of alloy design (with a special focus on ternary phase diagrams)
- Combinatorial materials research
- Kinetic concepts in materials science and engineering (with a focus on microstructural evolution)
- Basic concepts of solid state phase transformations
- Understanding and application of knowledge to four materials classes: high entropy alloys, intermetallic phases, single crystal superalloys and shape memory alloys
- Acquisition of knowledge about high temperature strength (example: superalloys), fracture mechanics and fatigue (example: shape memory alloys), structure and properties of alloys and compounds (chemistry, crystallography and physical properties) and methods for the invention of new materials (micro engineering and combinatorial materials research)

Educational form / Language

a) Lecture with tutorial / English / German

Examination methods

• Written exam 'Fundamental Aspects of Materials Science and Microengineering' (120 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passing the exam

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Gasdynam Gasdynamics					
Module number	Credits 5 CP	Workload 150 h	Semester[s] 9. Sem.	Duration 1 Semester[s]	Group size
Courses a) Gasdynami	cs		Contact hours a) 4 WLH (60 h)	Self-study a) 90 h	Frequency a) each winter
Prof. Romual	r dinator and le d Skoda ximilian Paßma				/
Recommende	equirements ed previous knov ree in Mechanica	-			
		nics (Grundlagen c Strömungsmecha	der Strömungsmecha nik).	nik), ideally also Ad	vanced Fluid
problems by s	selecting an app	ropriate approach	g sciences. The stude I to solving the proble I have the ability to tr	em and by applying	well established
 Conserving Speed of Normal Expansi Lift and Method 	vation laws f sound and Mad and oblique sho on waves drag in superso of characteristic ssible potential	ch-number ick waves nic flow cs	uid mechanics and the	ermodynamics	
	form / Langua WLH) / Lecture	ge (2 WLH) / English			
Examination • Oral exam '(0 Min., Part of mo	dul grade 100 %, Ora	l exam in English or	r optionally in Germa
-	ts for the awar le exam: Oral ex	d of credit point kam	S		
Module appl MSc. Mechan	icability ical Engineering				
Weight of th	e mark for the	final score			

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18). DIV: The values can be taken from the table of contents.

Further Information

Manuscripts for lecture and exercise are available in both English and German. Also, the entire module will be made available in German as a video stream via Moodle. Further literature will be recommended during the lecture.

Geothermal Drilling Engineering and Subsurface Technologies

Geothermal Drilling Engineering and Subsurface Technologies

			-		
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9 Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Geotherma	a) Geothermal Drilling Engineering and			a) 90 h	a) each winter
Subsurface Technologies					

Module coordinator and lecturer(s)

Prof. Dr. rer. nat. Rolf Bracke

a) Prof. Dr. rer. nat. Rolf Bracke

Admission requirements

Recommended previous knowledge:

English language skills: "Test of English as a Foreign Language" (TOEFL): the test result in the internet version (iBT) should be at least 80 points, or "International English Language Testing System" (IELTS): minimum overall score "6" ("academic").

Learning outcome, core skills

The course gives an introduction to the principles of conventional and advanced deep drilling technologies and of production and reservoir engineering technologies. Students learn how to plan a drilling project including wellbore planning and selection of toolings and devices.

Knowledge:

- Fundamentals of deep drilling systems
- Drilling tooling
- Well and casing stability
- Site management skills
- Mud circulation
- LWD / MWD techniques
- Reservoir characterisation and testing

Abilities:

- Explain the main methods and parameters of drilling technology
- Describe potential drilling problems
- Define the composition of the cost structure of a drilling project
- Calculate casing designs

Competences:

- Develop deep drilling and production concepts,
- Explain the main methods and parameters of drilling technology,
- Describe potential drilling problems,
- Name major advanced drilling technologies,

- Define the composition of the cost structure of a drilling project.
- Name hydraulic test methods,
- Describe reservoir test principles,
- Define the parameters of a conceptual reservoir model.
- Tell principles of resource management,
- Calculate simple production parameters.
- Define pumping systems for specific applications,
- Describe the processes in the borehole while pumping,
- Name the damage mechanisms of downhole pumps.
- Describe the hydrochemically induced failure processes in the borehole while pumping.

Contents

a)

- Deep drilling basics; mechanical rock destruction process
- Drilling techniques and process
- Rotary drilling, percussion drilling, directional drilling
- Innovative and unconventional drilling techniques (thermal, hydraulic, coiled tubing)
- Drilling specific laboratory analysis
- Mud logging
- Health, safety issues and environmental impacts of drilling projects
- Pumping the reservoir
- Test procedures and low-temperature reservoir modelling
- Reservoir Engineering

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English / German

Examination methods

• Term paper 'Geothermal Drilling Engineering and Subsurface Technologies' (40 Std., Part of modul grade 100 %, Homework as group work (in small groups) on various topics with subsequent presentation and discussion.)

Requirements for the award of credit points

Passed final module examination: Term paper

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Geothermal Energy Systems

Geothermal Energy Systems

	55 5				
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8 Sem.	1 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Geotherm	al Energy Systen	าร	a) 4 WLH (60 h)	a) 90 h	a) each summer

Module coordinator and lecturer(s)

Prof. Dr. rer. nat. Rolf Bracke

a) Prof. Dr. rer. nat. Rolf Bracke

Admission requirements

Recommended previous knowledge:

English language skills: "Test of English as a Foreign Language" (TOEFL): the test result in the internet version (iBT) should be at least 80 points, or "International English Language Testing System" (IELTS): minimum overall score "6" ("academic").

Learning outcome, core skills

The students know the fundamentals of energy conversion systems such as electricity generation from geothermal resources at low and at high enthalpy. They describe the function of the components of a power plant and understand the thermodynamics of fluid and steam cycles. They are able to design simple district heating networks and develop concepts for industrial applications for infrastructural and agricultural uses.

Kenntnisse:

- Components of a hydrothermal system
- Methods of enhancing geothermal reservoirs
- Reservoir principles for thermal water generation
- Schematic flow and temperature / entropy processes for geothermal plants
- Equipment for plants for electricity generation from steam and binary cycles and for direct uses
- Estimate the environmental and social impacts of geothermal projects

Fertigkeiten:

- Define the elements of thermodynamics
- Formulate the laws of thermodynamics
- · Recite principles of the conversion of heat to work
- Distinguish entropy from exergy

Kompetenzen:

- Explain the structure and dimensions of the earth and the related heat potential,
- Give an outlook to the expected major future applications of geothermal energy.
- · Name the main sources and amounts of heat deriving from the subsurface,
- Explain the temperature distribution inside the earth over space and time,

- Distinguish between the nuclear, thermal and solar heat sources within the earth's structure and their sustainability,
- Define the hydraulic characteristics of geothermal systems,
- Differentiate the temperature versus depth parameters of low temperature fields and sedimentary basins.
- Describe the main technical solutions for direct, indirect and combined electricity and heat production uses,
- Propose possible applications for available resource temperatures.
- Describe the interactions of geothermal energy conversion systems: reservoir-well-piping-plantreinjection
- Match the different power plant types and technical applications to corresponding reservoir conditions
- Identify the components of heat conversion technologies
- Develop technical solutions for given reservoir conditions, and regional or local energy demands.
- Compare the different cooling energy sources and choose the right cooling system for a site,
- Name the main elements for transmission and urban underground pipeline systems,
- · Define the impacts of plants on the environment,
- Illustrate the phases and cumulative costs at various stages of development,

Contents

- a)
- Global geothermal resources
- Elements of thermodynamics, fluid mechanics, and heat transfer applied to geothermal energy conversion systems
- Power plant technologies based on flash steam, direct steam, binary conversion systems, and hybrid systems
- Cooling technologies
- District heating networks and direct uses
- Pumping the reservoir
- Hybrid uses (water desalination)
- Mine water applications
- Corrosion and scaling processes
- Social and environmental impacts
- Case studies
- Economics, finance, and risk analysis of a geothermal project

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English / German

Examination methods

• Written exam 'Geothermal Energy Systems' (60 Min., Part of modul grade 100 %, Optional term paper to obtain bonus points for the written exam (40 hours, max. 10 pages, processing time 4 weeks, deadline will be announced at the beginning of the semester) If the number of participants is <= 10, the examination can also be conducted orally.)

Requirements for the award of credit points

Passed final module examination: Written exam

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Hydrogen Technologies

Hydrogen Technologies

	ermetegiee				
Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	8./9. Sem.	2 Semester[s]	no limitation
Courses			Contact hours	Self-study	Frequency
a) Hydrogen	Technologies I: Pro	oduction and	a) 2 WLH (30 h)	a) 45 h	a) each summer
Storage			b) 2 WLH (30 h)	b) 45 h	b) each winter
b) Hydrogen	Technologies II: Sy	nthetic Fuels and			
Basic Chemic	cals				
Madula ana	rdinator and last				

Module coordinator and lecturer(s)

Prof. Thomas Ernst Müller

a) Prof. Dr.-Ing. Ralf Peters

b) Prof. Dr.-Ing. Ralf Peters

Admission requirements

Recommended previous knowledge: none

Learning outcome, core skills

After successfully completing the module, students can

- describe the basic principles and functionality of current technologies and processes for the production and use of hydrogen,
- apply the methods presented in the lecture for the design of electrolysis systems.
- identify the necessary boundary conditions, possible applications and limits of the technologies and processes under consideration and, within the framework of the energy transition, derive possible scenarios for large-scale implementation,
- assess the contribution of water electrolysis to the energy transition from technological, ecological and economic aspects.
- describe the basic principles and functionality of current technologies and processes for the production and use of synthetic fuels and chemicals in the Power-to-X process chains,
- apply the methods presented in the lecture for the design of Power-to-X systems,
- identify the necessary boundary conditions, possible applications and limits of the technologies and processes under consideration and, within the framework of the energy transition, derive possible scenarios for large-scale implementation

Contents

a)

The hydrogen technologies course includes the theoretical foundations and technical development for topics such as electrolysis, chemical energy conversion and fuel cells in the field of electrochemical and chemical process engineering, which are crucial for the successful implementation of the energy transition in research and development in the coming decades.

The *Hydrogen Technologies I* course focuses on the topics of hydrogen production, storage, transport and direct use of hydrogen.

As part of the lecture, the underlying concepts and basic functionality of the technologies and processes under consideration are presented. Building on this, the electrochemical and chemical conversion steps are discussed in detail, relevant material and heat transfer phenomena are considered, initial model equations are derived in order to derive design approaches for technical implementation and to evaluate the technologies in terms of future value chains for hydrogen. The components electrolysis and fuel cells play an important role.

- Motivation, concepts and boundary conditions for the production and use of hydrogen and synthesis gas as well as other electrochemically produced intermediate products as part of the energy transition
- Balancing electrochemical conversion processes and deriving relevant equations for the design of electrolysers and fuel cells
- Scaling of processes and technical structures from electrocatalyst and component research, process engineering analysis and process development to the technical representation of subsystems and systems on a technical scale up to integration into pilot plants
- Scientific and technical fundamentals of SOC technology for electrolysis and fuel cell operation including design, construction and operation as well as scale-appropriate integration into existing real-world laboratories
- Storage technologies and transport options for hydrogen
- Methodical approaches from modeling and simulation, analytics as well as manufacturing methods and apparatus technology that can be derived from the system technology orientation

b)

The *Hydrogen Technologies II* course focuses on the topics of hydrogen use for power-to-fuel and power-tochemicals process chains.

As part of the lecture, the basic ideas and functionality of the technologies and processes under consideration are presented. Building on this, the chemical conversion steps are discussed in detail, relevant material and heat transfer phenomena are considered, initial model equations are derived in order to derive design approaches for technical implementation and to evaluate the technologies in terms of future value chains for synthetic fuels and sustainably produced chemicals.

Possible process chains are: the use of hydrogen and CO_2 for dynamic and decentralized methanol production (CH₃OH), the transport of CH₃OH and H₂ from preferred regions to Europe, the refining there using processes such as MtG (methanol-to-gasoline) and MtO (methanol-to-gasoline). to-olefins) to alkenes (chemical industry) and higher alcohols. Methanol-to-kerosene and methanol-to-diesel processes will provide liquid but sustainably produced fuels for various transport applications in the future

- Motivation, concepts and boundary conditions for the production and use of hydrogen, synthetic fuels and sustainably produced chemicals as part of the energy transition
- Process engineering aspects of the use of hydrogen and synthesis gas as well as other electrochemically produced intermediate products and CO₂ to produce synthetic fuels and chemicals. This may be done using CO₂ from biomass, from industrial process gases and, in the long term, by separating it from the air. Keywords: Power-to-X, Power-to-Fuel, Power-to-Chem.
- Balancing chemical conversion processes and deriving relevant equations for the design of synthesis reactors and peripheral components such as pumps, compressors and heat exchangers
- Process conditions and reactor design to achieve relevant throughputs with high thermomechanical integrity of components in thermocatalytic (membrane) reactors with elevated process temperatures and under high pressure. Increased integration of the development of membrane and multiphase reactors for process intensification

- Scaling of processes and technical structures from catalyst and component research, process engineering analysis and process development to the technical representation of subsystems and systems on a pilot scale to integration into pilot plants.
- Methodical approaches from modeling and simulation, analytics as well as manufacturing methods and apparatus technology that can be derived from the system technology orientation.

Educational form / Language

a) Lecture (2 WLH) / English

b) Lecture (2 WLH) / English

Examination methods

• Written exam 'Hydrogen Technologies' (90 Min., Part of modul grade 100 %, in case of number of participants lower than 10 the examination may be conducted orally)

Requirements for the award of credit points

Passed final module exam: Written exam or oral exam

Module applicability

M. Sc. Maschinenbau

M. Sc. Umweltingenieurwesen

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

In addition to the classic form of in-person lectures, short practical examples are offered as part of the lecture. In addition, at the end of the lecture, smaller mini-projects will be worked on - possibly as group work - which will then be presented online to the entire lecture course. Consultation by appointment.

ntroduction to Fluid-Flow Measurement Techni Module Credits Workload humber 5 CP 150 h Courses a) Introduction to Fluid-Flow Measurement Fechniques Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Admission requirements Recommended previous knowledge:	Semester[s] 8. Sem. Contact hours a) 4 WLH (60 h)	Duration 1 Semester[s] Self-study a) 90 h	Group size no limitation Frequency a) each summer
a) Introduction to Fluid-Flow Measurement Techniques Module coordinator and lecturer(s) Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Admission requirements Recommended previous knowledge:		Self-study	
Prof. Romuald Skoda a) DrIng. Maximilian Paßmann Admission requirements Recommended previous knowledge:			
Admission requirements Recommended previous knowledge:			
undamental of Fluid Mechanics (Grundlagen de Iechanics (Fortgeschrittene Strömungsmechar	-	nik), ideally also Ad	vanced Fluid
neasurement techniques and their applications o select an appropriate measurement techniqu exercises the student will gain hands-on experie he measurements. Additionally, the student will acquired measurement signals including an ana	ie for a given problem ence in setting up the Il have the ability to p	n. Through mandato e measurement syst perform a thorough	bry laboratory tem and performing data analysis of the
 Introduction / motivation / scope of module Flow visualization techniques (e.g. Surface methods: shadowgraphy, schlieren, interfe Pressure measurements (e.g. pressure ser pressure probes) Velocity measurements (e.g. multi-hole presence probes) Velocity measurements (e.g. thermoor Anemometry, Particle-Image-Velocimetry) Temperature measurements (e.g. thermoor measurements) Signal-/ Data analysis including error analy Test facilities 	e flow visualization, tr erometry) nsors and transducer robes, hotwire anemo) couples, resistance th	rs, surface pressure ometry, optical meth	e measurements, nods: Laser-Doppler
Educational form / Language a) Tutorial (2 WLH) / Lecture (2 WLH) / German			
Examination methods			
Oral exam 'Introduction to Fluid-Flow Measure Presentation (20 min) in English plus oral exam	• •		•

Requirements for the award of credit points

- Participation in all laboratory exercises.
- Presentation of allocated laboratory exercise.

• Passed module exam.

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Manuscripts for lecture and laboratory exercises are available in English. Further literature will be recommended during the lecture.

Module	Credits	Workload	Semester[s]	Duration	Group size
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation
Courses	L	J	Contact hours	Self-study	Frequency
a) Introductio	n to 3D Material	s Characterization	a) 4 WLH (60 h)	a) 90 h	a) each winter
Techniques					
Module coo	rdinator and le	cturer(s)			
Prof. Dr. Ton	g Li				
a) Prof. Dr. T	ong Li				
Admission	requirements				
Recommende	ed previous knov	vledge:			
Für die Teilna	ahme an der Vor	lesung sind keine fo	rmalen Voraussetzi	ungen zu erfüllen. G	Grundlagen
zum Aufbau	fester Stoffe, zu	Kristalldefekten un	d zu den chemische	n und mikroskopisc	hen
Untersuchun	gsmethoden we	rden kurz wiederhol	t, eventuell muss a	us dem Grundlagen	bereich ergänzenc

Introduction to Three-dimensional Materials Characterization Techniques

nachgearbeitet werden.

Learning outcome, core skills

By completing the course, students gain insight into a range of three-dimensional nanoscale and atomic scale material characterization techniques, e.g. 3D x-ray microscopy, electron tomography and atom probe tomography. They can describe the working principles of each technique in detail, summarize applications in a vast of applications, such as engineering alloys, catalyst materials, semiconductors, etc. and solve scientific questions related to material science by using three-dimensional material characterization techniques. Additionally, students will understand three-dimensional nanoscale and atomic scale material characterization methods, which are currently extremely important in both industry and academia, and achieve some basic hands-on experience on sample preparation and sample analysis on one of these techniques (depends on the availability of instrument).

Contents

a)

- 3D Energy-dispersive X-ray spectroscopy
- 3D-Field ion microscopy
- Atom probe tomography
- Electron tomography
- X-ray tomography
- Focused ion beam slicing/scanning electron microscopy

Educational form / Language

a) Seminar / Lecture with tutorial / English / German

Examination methods

• During the semester each student will be assigned a current topic on which the student has to write a fivepage report and give a talk (Percentage of the module grade 100 %)

Requirements for the award of credit points

passed module examination: semester assignments (Submission of report and holding of seminar talk)

Module applicability

- MSc. Mechanical Engineering
- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Masterarbeit Master's Thesis							
Module number	Credits 30 CP	Workload 900 h	Semester[s] 3. Sem.	Duration 1 Semester[s]	Group size		
Courses			Contact hours	Self-study	Frequency		
a) Masterarbeit				a) 900 h	a) each sem.		

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Andreas Kilzer

a) Prof. Dr.-Ing. Andreas Kilzer

Admission requirements

Compulsory, compulsory elective and elective modules amounting to at least 50 LP (a maximum of 40 LP is still missing for a successful degree) from the Master's degree programme and any conditions imposed upon admission must have been passed.

Learning outcome, core skills

The Master's thesis should show that the candidate is able to independently work on a challenging problem in mechanical engineering using scientific methods within a given period of time.

On a higher level the Master's thesis pursues the following objectives:

- The students are familiar with the current state of modern engineering research in the area of their major field of study.
- The students are familiar with the most modern methods and procedures of engineering sciences/ mechanical engineering in the area of their major field of study and know application examples.
- The students are able to model and solve complex engineering problems (if necessary interdisciplinary), as well as develop and implement their own approaches.
- The students can transfer knowledge/skills to concrete mechanical engineering/engineering problems.
- Students can transfer knowledge/skills to concrete and new problems.
- Students possess enhanced social competences relevant to their training, with a particular focus on independence and initiative

Contents

a)

Various topics from the Master's programme, typically based on the chosen focus or the research areas of the supervising university teacher. Assignments are always formulated by university teachers and should reflect the scientific standard of the degree programme; if necessary, suggestions for topics from students can be taken into account. Both theoretical and experimental tasks can be worked on.

Educational form / Language

a) Final thesis / German / English

Examination methods

• Final thesis 'Master's Thesis' (900 Std., Part of modul grade 100 %)

· Internediate or final presentation (approx. 30 minutes)

Requirements for the award of credit points

- Passed final module examination: Final paper
- Successful intermediate or final presentation

Module applicability

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 30 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

The Master's thesis can also be written in English.

Materials for Aerospace Applications Materials for Aerospace Applications							
Module	Credits	Workload	Semester[s]	Duration	Group size		
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation		
Courses			Contact hours	Self-study	Frequency		
a) Materials for Aerospace Applications		a) 4 WLH (60 h)	a) 90 h	a) each winter			
Module cod	ordinator and le	cturer(s)					
Prof. DrIng.	. Marion Bartsch						

a) Prof. Dr.-Ing. Marion Bartsch

Admission requirements

Recommended previous knowledge:

recommended are basics in materials science and solid mechanics and english skills B1

Learning outcome, core skills

After successful completion of the module students can

- recapitulate which high performance materials and material systems are used for aerospace applications, how they are manufactured, and which microscopic mechanisms control their properties
- explain and apply procedures for selecting and developing material systems for aerospace components, considering the specific requirements
- decide which characterization and test methods to apply for qualifying materials and joints for aerospace applications and know how lifetime assessment concepts work
- · draft work flows from data acquisition to certification of aerospace components
- communicate, using technical terms in the field of aerospace engineering in English

Contents

a)

The substantial requirements on materials for aerospace applications are "light and reliable", in most cases for extreme service conditions. Therefore, specially designed materials and material systems are in use. Manufacturing technologies and characterization methods for qualifying materials and joints for aerospace applications will be discussed. Topics are:

- loading conditions for components of air- and space crafts (structures and engines)
- selecting and developing materials and material systems for service conditions in aerospace applications (e.g. aero-engines, rocket engines, thermal protection shields for reentry vehicles, light weight structures for airframes, wings, and satellites)
- degradation and damage mechanisms of aerospace material systems in service
- characterization and testing of materials and joints for aerospace applications
- concepts and methods for lifetime assessment
- data handling from acquisition to certification of aerospace components

Educational form / Language

a) Lecture with tutorial / English / German

Examination methods

• Written exam 'Materials for Aerospace Applications' (120 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Bestandene Modulabschlussprüfung: Klausur

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

script in English, additional literature announced during lecture

Multiscale Mechanics of Materials Multiscale Mechanics of Materials						
Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	9. Sem.	1 Semester[s]	no limitation	
Courses	1		Contact hours	Self-study	Frequency	
a) Multiscale	Mechanics of M	aterials	a) 4 WLH (60 h)	a) 90 h	a) each winter	
Module cod	ordinator and le	cturer(s)		1		
Prof. Dr. Alex	xander Hartmaie	r				
a) Dr. Rebec	ca Janisch					
Admission	requirements					
Recommend	ed previous know	wledge:				
keine						
Learning ou	utcome, core sl	cills				
Students pos	ssess a fundame	ntal understanding	g of the multiscale na	ture of the mechan	ical behaviour	
a formation that	and of the differ	ent approaches to	take this into accoun	t in mechanical mod	telling of	
or materials						
microstructu	ires. They can id	entify the relevant	length- and timescal	es of the microscop	bic processes that le	
microstructu to meso-/ma	ires. They can ide acroscopic struct	entify the relevant sure-property relat	length- and timescal ionships. The student	es of the microscop s understand the pr	ic processes that le rinciples of effective	
microstructu to meso-/ma theory const	ires. They can id icroscopic struct ruction, coarse g	entify the relevant cure-property relat graining and homog	length- and timescal ionships. The student genisation methods, a	es of the microscop is understand the pi and they can apply t	ic processes that le rinciples of effective hem to identify,	
microstructu to meso-/ma theory const analyse and	ires. They can id icroscopic struct ruction, coarse g model multiscal	entify the relevant ure-property relat praining and homogen e problems, such a	length- and timescal ionships. The student genisation methods, a as plastic deformation	es of the microscop is understand the pr and they can apply t n, hardening behavio	ic processes that le rinciples of effective hem to identify, pur, and fracture of	
microstructu to meso-/ma theory const analyse and microstructu	ires. They can id icroscopic struct ruction, coarse g model multiscal ires. They are fai	entify the relevant cure-property relat graining and homog e problems, such a miliar with state of	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an	es of the microscop is understand the pr and they can apply t n, hardening behavio d theoretical scale-	ic processes that le rinciples of effective hem to identify, our, and fracture of bridging modelling	
microstructu to meso-/ma theory const analyse and microstructu methods. Th	ires. They can id acroscopic struct ruction, coarse g model multiscal ares. They are fai ey can apply nur	entify the relevant ure-property relat graining and homog e problems, such a miliar with state of nerical tools on dif	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales,	es of the microscop is understand the pr and they can apply t n, hardening behavio d theoretical scale- and understand the	ic processes that le rinciples of effective hem to identify, our, and fracture of bridging modelling e underlying principl	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m	ires. They can id acroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discrete	entify the relevant sure-property relat graining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an fferent length scales, mics, crystal and cont	es of the microscop is understand the pr and they can apply t in, hardening behavio d theoretical scale- and understand the tinuum plasticity). F	ic processes that le rinciples of effective hem to identify, our, and fracture of bridging modelling e underlying principl inally, students buil	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t	ires. They can id icroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discreto o independently	entify the relevant ure-property relat raining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales, mics, crystal and cont dging models that int	es of the microscop to understand the pr and they can apply t n, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary	ic processes that le rinciples of effective hem to identify, bur, and fracture of bridging modelling underlying principl inally, students built y scales and employ	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t these model	ires. They can id icroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discreto o independently	entify the relevant ure-property relat raining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an fferent length scales, mics, crystal and cont	es of the microscop to understand the pr and they can apply t n, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary	ic processes that le rinciples of effective hem to identify, bur, and fracture of bridging modelling underlying principl inally, students built y scales and employ	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t these model Contents	ires. They can id icroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discreto o independently	entify the relevant ure-property relat raining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales, mics, crystal and cont dging models that int	es of the microscop to understand the pr and they can apply t n, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary	ic processes that le rinciples of effective hem to identify, bur, and fracture of bridging modelling underlying principl inally, students built y scales and employ	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t these model Contents a)	ires. They can iden acroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discrete o independently s to describe and	entify the relevant sure-property relat graining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid d predict mechanic	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales, mics, crystal and cont dging models that int al properties of mate	es of the microscop is understand the pr and they can apply t in, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary rials under given co	ic processes that le rinciples of effective hem to identify, bur, and fracture of bridging modelling a underlying principl inally, students buil y scales and employ inditions.	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t these model Contents a) • Introdu	ires. They can idencroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discrete o independently s to describe and	entify the relevant sure-property relat graining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid d predict mechanic	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales, mics, crystal and cont dging models that int al properties of mate	es of the microscop is understand the pr and they can apply t in, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary rials under given co	time scales	
microstructu to meso-/ma theory const analyse and microstructu methods. Th (atomistic m up the skill t these model Contents a) • Introdu • Overvie	ires. They can ide acroscopic struct ruction, coarse g model multiscal ires. They are fai ey can apply nur odelling, discrete o independently s to describe and	entify the relevant sure-property relat graining and homog e problems, such a miliar with state of nerical tools on dif e dislocation dynar develop scale- brid d predict mechanic	length- and timescal ionships. The student genisation methods, a as plastic deformation the art numerical an ferent length scales, mics, crystal and cont dging models that int al properties of mate	es of the microscop is understand the pr and they can apply t in, hardening behavio d theoretical scale- and understand the tinuum plasticity). F egrate all necessary rials under given co	time scales rials	

- Bridging scales in plasticity
- Bridging scales in fracture
- Numerical models and technical aspects of hierarchical multiscale simulations (atomistic modeling, discrete dislocation dynamics, continuum and crystal plasticity)

Educational form / Language

a) Tutorial / Seminar / English / German

Examination methods

• Written exam 'Multiscale Mechanics of Materials' (120 Min., Part of modul grade 100 %, oder mündliche Prüfung (30 Min., wird zu Beginn der Lehrveranstaltung festgelegt))

Requirements for the award of credit points

Bestandene Modulabschlussprüfung: Mündliche Prüfung oder Klausur

Module applicability

- MSc. Maschinenbau
- MSc. Sales Engineering and Product Management
- MSc. Materials Science and Simulation

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Numerical Methods for Internal Aerodynamics Numerical Methods for Internal Aerodynamics						
Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation	
Courses			Contact hours	Self-study	Frequency	
a) Numerical Methods for Internal Aerodynamics			a) 4 WLH (60 h)	a) 90 h	a) each summer	
Module coordinator and lecturer(s)						

Prof. Dr. Francesca di Mare

a) Prof. Dr. Francesca di Mare

Admission requirements

Recommended previous knowledge: Calculus: integration, partial derivatives, Taylor Series, and coordinate systems Linear Algebra: solving linear systems Mechanics: momentum and force Thermodynamics: heat and energy Fluid mechanics: compressibility, laminar and turbulent flows, Navier-Stokes Equations Programming background: Python, matlab, etc.

Learning outcome, core skills

Completing the course successsfully, the student understands the principles of computer simulations for dynamic systems from the numerical point of view. This allows the student to analyze, derive, and implement a simulation of a flow model in a number of methods.

- The student understands the principles of discretization for conservation laws, in particular, equations of flow, and is able to identify the method/approach used in the simulation.
- The student analyzes and implements a workflow for a simulation using a numerical method/approach, with the ability to judge the accuracy and stability of their implementation.
- The student recognizes the difficulties and appropriate setups for internal flows.

Contents

- a)
- Review of important models in fluid mechanichs and thermodynamics: mass, heat, and momentum
- Review of important concepts in partial differencial equations: equation types and conservation laws
- Finite-difference method:
- # Order of approximation
- # Boundary conditions
- # Solving the linear system
- Finite-volumes method:
- # Volume average
- # Interface interpolation
- # Flux limiters
- Time discretization schemes:
- # Order of approximation
- # Implicit and explicit schemes
- # Multi-step and multi-stage schemes

- # Courant-Friedrichs-Lewy stability condition
- (Optional) Advanced topics:
- # Multi-grid method
- # Finite-element method
- # Optimization based simulation: physics-informed neural network

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English

Examination methods

Oral exam 'Numerical Methods for Internal Aerodynamics' (45 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passed final examination: Written examination

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Process Design Process Design							
Module	Credits	Workload	Semester[s]	Duration	Group size		
number	5 CP	150 h	8. Sem.	1 Semester[s]	no limitation		
Courses			Contact hours	Self-study	Frequency		
a) Process Design			a) 2 WLH (30 h)	a) 110 h	a) each summer		

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Marcus Grünewald

a) Prof. Dr.-Ing. Marcus Grünewald, Dr. Helmut Mothes

Admission requirements

Recommended previous knowledge:

none

Learning outcome, core skills

After successful completion of the module, students can use the latest methods and procedures of process design in engineering sciences / mechanical engineering and are familiar with application examples:

- familiarize themselves with process design methods using industrially relevant examples,
- identify these methods in current problems, considering the boundary conditions of process integration and intensification,
- be able to recognize so-called "no regret solutions", i.e. process designs that are based on optimized performance instead of optimized equipment design, for various process examples,

be able to transfer corresponding knowledge/skills to specific and new problems.

Contents

a)

High-tech materials, agricultural chemicals and pharmaceuticals are essential to provide food, healthcare and consumer goods to a growing world population. It is the fundamental task of process design to design and layout chemical processes that convert raw materials into the above-mentioned products. The process design is used in later stages of development as the basis for the Detail Engineering and the construction of the chemical plant. In the past, detailed business plans could reliably predict the supply and demand side, raw material and energy supply and competitive situations over the entire lifecycle of a product. Today, in an increasingly complex world, the ability to adapt processes flexibly to changing conditions is becoming an important additional criterion. Changing boundary conditions include, for example, unexpected and sudden changes in the supply of raw materials or demand. The new, overarching goal of process design is therefore to develop so-called "no-regret solutions", i.e. process designs that focus on optimized performance in various future scenarios instead of an optimized equipment design. The course focuses on the key methodological aspects that lead to the development of robust, ecologically, and economically sustainable process designs. The approaches learnt are deepened through the detailed discussion of various examples of industrial relevance.

Educational form / Language

a) Lecture (2 WLH) / English

Examination methods

• for 3 credit points: Oral examination (30 min.), for 5 credit points: Oral examination (30 min.) AND Project work (90h)

Requirements for the award of credit points

Passed final module exam: Oral examination and project work

Module applicability

Msc. Mechanical Engineering

MSc. Sales Engineering and Product Management

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Prozesssimulation energietechnischer Anlagen

Process Simulation of Energy Plants

Module	Credits	Workload	Semester[s]	Duration	Group size	
number	5 CP	150 h	9. Sem.	1 Semester[s]	45	
Courses			Contact hours	Self-study	Frequency	
a) Prozesssim	ulation energietec	hnischer	a) 4 WLH (60 h)	a) 90 h	a) each winter	
Anlagen						

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Roland Span

a) Prof. Dr.-Ing. Roland Span

Admission requirements

Knowledge with regard to the thermodynamic analysis of processes and plants in energy technologies, which can typically be taken for granted after completion of a Bachelor course with an appropriate extent of content relevant for energy technologies. No specific preconditions for participation.

Learning outcome, core skills

After successful completion of the module

- Building on fundamental knowledge regarding processes in energy technologies, students are able to model existing and new (discussed in the scientific literature) processes using modern simulation tools,
- Students can assess power and efficiency of plants and processes in energy technologies and can identify influential parameters,
- Students can analyse and assess the operating behaviour of real and hypothetical processes and plants in energy technologies,
- Students can explain and assess the relevance of specific parameters of a process on a high level of abstraction based on parameter studies,
- Students know the mathematical and thermodynamic foundations of process-simulation software,
- Students can use advanced simulation tools to solve complex tasks,
- Students can assess the performance and limits of simulation tools and can critically evaluate their performance (advantages and disadvantages).

Contents

a)

Starting from the manual evaluation of processes in energy technology, which has been dealt with in different modules in pertinent Bachelor courses, the essential requirements for software for the simulation of processes in energy technologies are derived. The four main elements of such programs (graphical user interface, nonlinear equation solver, models for specific components, property package) are exemplarily introduced. Advantages and disadvantages of different solutions are discussed. The students set up models for simple processes (gas turbine and steam power-plants, ORC process, heat pump, solar power plant). The influence of the most important operating parameters is explained using the self-developed models as examples. Options for a systematic variation of operating parameters are introduced. As special case the application of process-simulation tools for an assessment of completely new processes (scientific application) and for the validation of measured process parameters (process control in operating plants) is discussed.

Educational form / Language

a) Lecture with tutorial / German / English

Examination methods

• Written exam 'Process Simulation of Energy Plants' (120 Min., Part of modul grade 100 %, In case less than 10 students are enrolled, the written exam can be replaced by an oral exam (30 minutes) with 60 minutes preparation of the questions at a computer (60 minutes))

Requirements for the award of credit points

Passed module examination: written or oral exam, see above

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Further Information

Lecture and tutorials integrated (4 SWS); the module is offered in a bilingual mode. Supervision of the enrolled students can be offered in German and English in parallel.

Module number	Credits 5 CP	Workload 150 h	Semester[s] 8. Sem.	Duration 1 Semester[s]	Group size
Courses	0.01	10011	Contact hours	Self-study	Frequency
a) Service Er	ngineering		a) 3 WLH (45 h)	a) 105 h	a) each summer
Prof. Dr. Jen	ordinator and le s Pöppelbuß ens Pöppelbuß	ecturer(s)			
	requirements ed previous know	wledge:			
Learning or	utcome, core s	kills			
After succes	sful completion	of the module,			
produc	its will be able to t-service system	-	entiate between diffe	rent types of indust	trial services and
firms a • Studen • Studen succes • Studen	nd to develop ex ts will be able to ts will be able to s. ts will be able to	emplary approach apply customer-c explain the impor engage with curre	I frameworks and me es for innovative busi priented methods to d tance of service quali ent research results f hem to the state of th	ness models. levelop innovative s ity and service exce from the field of ser	ervice offerings. llence for business vice engineering,
firms a • Studen • Studen succes • Studen commu	nd to develop ex ts will be able to ts will be able to s. ts will be able to	emplary approach apply customer-c explain the impor engage with curre	es for innovative busi priented methods to d tance of service quali ent research results f	ness models. levelop innovative s ity and service exce from the field of ser	ervice offerings. llence for business vice engineering,
firms a Studen Studen succes Studen comm Contents a) Servitiz Industr Digital Busine Frame Model Service bluepri Service	nd to develop ex its will be able to its will be able to s. its will be able to unicate them to o zation of Manufa ial services, cus services and sm ss models works and metho Canvas, St. Gallo e engineering/de nting) e quality	emplary approach o apply customer-o o explain the impor o engage with curre others and relate th cturing tomer solutions an art services ods for analyzing, o en Business Model sign/innovation me	es for innovative busi priented methods to d tance of service quali ent research results f hem to the state of th d product-service sys developing and comm Navigator). ethods (e.g., personas	ness models. levelop innovative si ity and service exce from the field of ser- ne art of service rese stems	ervice offerings. llence for business vice engineering, earch.
firms a Studen Studen succes Studen comm Contents a) Servitiz Industr Digital Busine Frame Model Service bluepri Service	nd to develop ex its will be able to its will be able to s. its will be able to unicate them to o zation of Manufa ial services, cus services and sm ss models works and metho Canvas, St. Gallo e engineering/de nting) e quality	emplary approach o apply customer-co o explain the impor o engage with curre others and relate th cturing tomer solutions an art services ods for analyzing, c en Business Model	es for innovative busi priented methods to d tance of service quali ent research results f hem to the state of th d product-service sys developing and comm Navigator). ethods (e.g., personas	ness models. levelop innovative si ity and service exce from the field of ser- ne art of service rese stems	ervice offerings. llence for business vice engineering, earch.
firms a Studen Studen succes Studen comm Contents a) Servitiz Industr Digital Busine Frame Model Service bluepri Service Educationa	nd to develop ex its will be able to its will be able to s. its will be able to unicate them to of ation of Manufa ial services, cus services and sm ss models works and metho Canvas, St. Gallo e engineering/de nting) e quality ure models for s I form / Langua	emplary approach o apply customer-o o explain the impor o engage with curre others and relate th others and relate th cturing tomer solutions an art services ods for analyzing, o en Business Model sign/innovation me	es for innovative busi priented methods to d tance of service quali ent research results f hem to the state of th d product-service sys developing and comm Navigator). ethods (e.g., personas	ness models. levelop innovative si ity and service exce from the field of ser- ne art of service rese stems	ervice offerings. llence for business vice engineering, earch.

• Assignments during the course: Presentation of an academic article from the field of service research (group performance, presentation duration 15 minutes, workload per group member: 10 hour; possible dates will be announced at the beginning of the semester).

Requirements for the award of credit points

- Passed final module examination: written or oral examination
- Passed study-related tasks: Paper presentation

Module applicability

MSc. Sales Engineering and Product Management

MSc. Mechanical Engineering

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Thermodynamics of Mixtures

Thermodynamics of Mixtures

Credits	Workload	Semester[s]	Duration	Group size
5 CP	150 h	8. Sem.	Semester[s]	no limitation
		Contact hours	Self-study	Frequency
nics of Mixtures -	Lecture	a) 3 WLH (45 h)	a) 30 h	a) each summer
nics of Mixtures -	- Group	b) 1 WLH (15 h)	b) 60 h	b) each summer
	5 CP		5 CP150 h8. Sem.nics of Mixtures - Lecturea) 3 WLH (45 h)	5 CP150 h8. Sem.Semester[s]Contact hours nics of Mixtures - LectureContact hours a) 3 WLH (45 h)Self-study a) 30 h

Module coordinator and lecturer(s)

Prof. Dr.-Ing. Roland Span

a) Prof. Dr.-Ing. Roland Span

b) Prof. Dr.-Ing. Roland Span

Admission requirements

Recommended previous knowledge:

Basics of thermodynamics, as they are commonly taught in Bachelor courses in Mechanical Engineering or equivalent subjects. No specific preconditions.

Learning outcome, core skills

After successful completion of the module

- Students can explain the specifics of thermodynamic properties of mixtures on a high level of abstraction,
- Students can challenge and assess new findings in the area of thermodynamic properties of mixtures,
- Students can utilize their knowledge on thermodynamic properties of mixtures to solve complex problems in energy and process engineering,
- Students can identify missing information in the field of thermodynamic properties, can access available information, and can assess found data critically,
- Students can assess the relevance of new research results in the field of thermodynamic properties of mixtures.

Contents

a)

- Calculation of thermodynamic properties for processes in energy technologies (equation of state models, properties of water and steam as special case, ideal mixture of real gases)
- Thermodynamic properties of mixtures, representation as excess properties and as partial molar properties
- Foundation of mixture effects on a molecular basis
- Models for the excess Gibbs-enegry and for the activity coefficient
- Phase equilibria with liquids, solids and gases
- Modern equations of state for mixtures

b)

Educational form / Language

a) Tutorial (1 WLH) / Lecture (3 WLH) / English

b) / English

Examination methods

• Written exam 'Thermodynamics of Mixtures' (150 Min., Part of modul grade 100 %)

Requirements for the award of credit points

Passed final module examination: Written exam

Module applicability

no information

Weight of the mark for the final score

Percentage of total grade [%] = 5 * 100 * FAK / DIV

FAK: The weighting factors can be taken from the table of contents (see also PO 2021 §18).

DIV: The values can be taken from the table of contents.

Turbulenzmodellierung Turbulence Modelling					
Module number	Credits 5 CP	Workload 150 h	Semester[s] 9. Sem.	Duration 1 Semester[s]	Group size
Courses a) Turbulence Modelling			a) 4 WLH (60 h)	Self-study a) 90 h	Frequency a) each winter
Module coo Prof. Romual a) Prof. Romu		cturer(s)			
Recommende Fundamental		nics (Grundlagen d	er Strömungsmecha nik), Numerical Meth		
CFD software to assess est	e. They have exp ablished methoc interdisciplinary	anded their compe Is with regard to a	ent turbulence model etences of networkec ccuracy, stability and competences and bas	l and critical thinkin d effort. The student	g and are able
 Overvie Introduce Detailed Hybride Wall tree Lamina 	w over turbulend ction to Direct and d presentation of models: Scale Ad eatment r turbulent trans	nd Large Eddy Sim statistical turbule daptive (SAS) und) Simulation	ds Stress models)
	form / Langua WLH) / Lecture	ge (2 WLH) / English			
Examination • Oral exam ' German)		elling' (45 Min., Pa	rt of modul grade 10	0 %, Oral exam in E	nglish or optionally in
-	Its for the awar Ile exam: Oral ex	d of credit point s am	S		
Module app M.Sc. Mechai	licability nical Engineering]			
Percentage of FAK: The wei	ghting factors ca	= 5 * 100 * FAK /	he table of contents	(see also PO 2021 §	318).

Further Information

Manuscripts for lecture and exercise are available in both English and German. Also, the entire module will be made available in German as a video stream via Moodle. Further literature will be recommended during the lecture.